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Abstract—There are several ways to generate a model for the 

specific dataset. Linear regression is the process of generating that 
model. This report used two methods to compare the correlation 
coefficients. Least squares approximation and Adam Optimization 
were the methods used to extract a model. The least squares 
approximation was slightly better with R = 0.0327 compared R = 
0.0321 for the Adam Optimization. 
 

Index Terms—Adam Optimization, Gradient Decent, Least 
Squares Approximation 
 

I. INTRODUCTION 
INEAR Regression is the process of modeling the 
dependent variables to the independent variables, similar to 

mapping. This technique is commonly applied in computer 
learning. For this example, models were generated using two 
different methods for a dataset of 275 points. The features 
associated with the input were irrelevant. The intended purpose 
was to select the model that had the greater chance of modeling 
the next 30 points with the minimum amount of error.  Least 
squares approximation and Adam Optimization were the two 
methods used to model the dataset. This report will have an 
overview of the mathematical theory, how each model was 
calculated, and the results. A correlation coefficient (R2) will be 
calculated for each linear fit for comparison. The model with 
the best value, or fit, will then be formally submitted as the 
solution to the given problem. 

II. LEAST SQUARES APPROXIMATION 
The least square approximation is a linear algebra calculation 

to determine an independent value or vector that will minimize 
the error [1] [2]. The error, in this case, is the difference 
between the fitted model to the dataset values. This process 
used the matrix representation of the input features and the 
output. The first section will discuss the theory of least squares 
approximation followed by the results of using this method on 
the provided dataset. 

A. Theory 
 The least square approximation implements the use of 
projections onto the column space. It is important to note the 
notation change for the purpose of this report. Equation 1 is 
the traditional notation commonly used in textbooks covering 
linear algebra. Equation 2 is the updated notation to reflect the 
use of the cost function, the predicted x, and predicted y.  

 
 

 Equation 3 is the Euclidean norm or distance notation.  This 
projection of 	𝑦# onto Θ was equivalent to the minimized norm 
value as listed in Equation 4. Equation 5 is the fundamental 
equation for the system that minimizes the solution for 𝑥#. 
 

𝐴𝑥 = 𝑏	 (1) 
 

Θ𝑥# =	𝑦#	 (2) 
 

‖𝑦# − Θ𝑥#‖	 (3) 
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3
‖𝑦# − Θ𝑥#‖ = 𝑃56789𝑦#	 (4) 

 
Θ;Θ𝑥# = Θ;𝑦#	 (5) 

 

B. Setup/Results 
The given data was a singular vector of values and was 

treated as the output (Equation 6). In order to properly apply the 
least squares approximation, the matrix Θ had to be constructed. 
A vector of 1’s was needed in the first column, also referred to 
as vector Θ=. To complete the matrix, a second column was 
added, Θ>, that was the index values for the output. Those index 
values were treated as the inputs to the singular feature of the 
system of equations (Equation 6). The next step was to 
manipulate the fundamental equation to solve for the minimal 
value. Equation 7 was the result of the equation manipulation. 
The code used to determine the model and plot the results is 
listed in the Appendix.   

Figure 1 is the result of executing the least squares 
approximation code (Appendix). From the plot, it can be 
observed that there are several outliers, but the majority of the 
values are at and below 60.  

 

Θ = ?
1 1
1 2
⋅ ⋅
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B											𝑦# = ?
5
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⋅
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𝑥# = (Θ; ∙ Θ)FG ∙ ΘH ∙ 𝑦#	 (7) 
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Figure 1: Least Squares Approximation Plot and Dataset Plot 

 
 

III. ADAM OPTIMIZATION 
 Adam Optimization (Adam) is a modified gradient descent 
algorithm. A gradient descent is a process to optimize the cost 
function. The cost function is the difference between the 
predicted value and the actual value [3]. For example: Figure 2 
is a contour plot of the cost function [3]. The gradient descent 
follows the downward slope of the system towards the 
minimum value. The red trace is the path taken by the gradient 
descent process. Adam Optimization utilizes moments from 
the first and second gradients to have an adaptive learning rate 
[5]. The learning rate is simply the step size the system 
contour. A small learning rate has the tradeoff of requiring 
more iterations before achieving the minimum value. On the 
other hand, a large learning rate comes at a risk of missing or 
jumping over the minimal values [3]. The gradient descent is 
applied in deep learning and computer learning applications 
were the dataset is larger enough that Least Squares is not 
possible. 

A. Adam Optimization 
 Adam Optimization was designed to combine advantages 
from Adaptive Gradient (AdaGrad) and Root Mean Square 
Propagation (RMSProp) [6]. Since Adam is an iterative 
process, the critical equations will be discussed in this section 
and the code is listed in the Appendix section.  
 
 For each iteration, the learning rate is updated through Wt 
by taking the past iteration into account with a set learning 
rate, 𝛼, and current moment estimations (Equation 12). This 
ability to adjust the learning rate with minimal memory by 
only using the previous values and current moment estimates, 
is what separates Adam from other gradient descent 
optimization. Equation 8 is a proportional example of the 
updated learning rate. Equation 9 is the first biased moment 
estimate. Equation 10 is the second biased moment estimate. 
To remove those biases, Equation 11 will need to be executed. 
 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
S𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑠𝑞𝑢𝑎𝑟𝑒	𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

	 (8) 

 

𝑀Y = βG𝑀YFG + (1 − 𝛽G)∇𝐿Y(𝑊YFG)	 (9) 

 

𝑅Y = 	𝛽>𝑅YFG + (1 − 𝛽>)∇𝐿Y(𝑊YFG)>		 (10) 

 

𝑀Yc =	
𝑀Y

1 − 𝛽GY
, 𝑅Yc =

𝑅Y
1 − 𝛽>Y

	 (11) 

 

𝑊Y = 𝑊YFG −
𝛼𝑀Yc

S𝑅Yc + 𝜖
		 (12) 

 

 

 
Figure 2: Cost Function Contour Gradient Descent Trace [] 

B. Setup/Results 
 Similar to the execution of the Least Squares 
Approximation methods mentioned before, a single vector was 
constructed as an input feature for approximation (13) 
 

Θ = ?
1
2
.

275

B											𝑦# = ?
5
11
⋅

34.5

B					 (13) 

 
 Constructing a Linear Regression model using Adam 
Optimizer provided an additional method of testing the input 
labels to explore other options and algorithms in addition to 
Least Squares Approximation. Using open sourced python 
code [4] and libraries such as TensorFlow and NumPy, 
creating a model to evaluate the label data vectors provided 
additional methods of evaluating the time series data. The time 
series vector 𝑦# was split into training and test data for 
evaluation purposes. From there the setup of the Linear 
Regression model using Adam was fairly similar to the Least 
Squares Approximation in defining the model, epochs, and 
learning rates. Figure 3 shows the output of the Adam model, 
because some data is used in testing and training the model, 
the graph is less dense than that of the Least Squares Data Plot 
in Figure 1.  
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Figure 3: Adam Optimization Plot and Dataset Plot 

IV. CONCLUSION 
 These two methods, Least Squares and Adam, were selected 
to compare an analytical process to an iterative process to fit a 
model to a given dataset. The winner will be used to predict 
the next 30 values, per project instructions. Both methods 
were relatively simple to execute and generated results in a 
short amount of time. That was expected since the dataset only 
consisted of 275 values and only one input feature. A 
correlation coefficient was calculated for each result and used 
as a comparison. It is important to note that each method has 
strengths and weakness. Table 1 lists the strengths and 
weakness along with the correlation coefficient of each 
method. According to Table 1, the Least Square 
Approximation had the highest correlation coefficient.  
 
Table 1: Strengths, Weaknesses, and Results for each Method 

 Strength Weakness Corr .Coeff 

Least 
No learning rate 
No iterations 
 

Large dataset 
Matrix inverse 
Redundant 
 features 

0.0327 

Adam 
Large dataset 
Adaptable 
 learning rate 

Many 
iterations 
Time/iteration 

0.0321 

V. SUBMISSION  
 The following section is the official submission for Project 
2 with code and instructions. Figure 4 is the plot of the 
modified Matlab code. Equation 14 is the hypothesis equation 
that lists the values of Θ. Table 2 lists the prediction values for 
the next 30 points.  
 The load instructions are simple. Open Matlab and place the 
excel file for the dataset into the file path. Then copy and paste 
the modified Matlab script and save. Run the Matlab script. 
The script will output a plot (Figure 4) and save all the 
predicted values in variable Reg. Once Reg is saved in the 

workspace, it can be applied to the new dataset to determine 
error. 

 
Figure 4: Submission Plot 

 
ℎg(𝑥) = 35.4720 + 0.0871𝑥	 (14) 

 
Table 2: Submission Prediction Data Points 

x1 y1 x2 y2 x3 y3 

276 59.52 286 60.3913 296 61.2627 

277 59.6072 287 60.4785 297 61.3498 

278 59.6943 288 60.5656 298 61.4369 

279 59.7814 289 60.6527 299 61.524 

280 59.8686 290 60.7399 300 61.6112 

281 59.9557 291 60.827 301 61.6983 

282 60.0428 292 60.9141 302 61.7854 

283 60.13 293 61.0013 303 61.8726 

284 60.2171 294 61.0884 304 61.9597 

285 60.3042 295 61.1755 305 62.0468 
 

A. Matlab Script for Submission 
filename = "project2_time series 
data_students.xlsx"; 
data = xlsread(filename); 
temp = ones(275,1); 
x = [temp data(:,1)]; 
y = data(:,2); 
theta = (x'*x)^(-1)*x'*y 
prediction = (1:1:275+30); %Dataset plus 
30 prediction points 
Reg = theta(1)+theta(2)*prediction; 
plot(prediction,Reg,'LineWidth',2); 
hold on 
scatter(data(:,1),data(:,2),'filled'); 
 
 



 
 

4 

VI. REFERENCES 
 
[1]  A. A. Rodriguez, "Least Square, Minimum Norm, and Projection 

Problems," in Linear Systems - Analysis and Design, Tempe, 
Control3D, L.L.C, 2004, pp. 370-372. 

[2]  G. Strang, "Least Square Approximation," in Introduction to 
Linear Algabra, Wellesley, Wellesley-Cambridge Press, 2009, 
pp. 218-223. 

[3]  A. Ng, "Lecture 4.6 - Linear Regression with Multiple Variables | 
Normal Equation," YouTube, 2016. 

[4]  R. Norouzy, "Linear regression in tensorflow," Kaggle Inc, Feb 
2018. [Online]. Available: 
https://www.kaggle.com/rohumca/linear-regression-in-
tensorflow. [Accessed Sept. 2018]. 

[5]  D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic 
Optimization," in International Conference of Learning 
Representations (ICLR), 2015.  

[6]  N. Cohen, "The Hebrew University of Jerusalem," 18 Oct. 2015. 
[Online]. Available: 
https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_re
source/content/1/adam_pres.pdf. [Accessed 18 Sept. 2018]. 

 

VII. APPENDIX 

A. Least Squares Code 
1  
2  filename = "project2_time series data_students.xlsx"; 
3  data = xlsread(filename); 
4  
5   temp = ones(275,1); 
6   x = [temp data(:,1)]; 
7   y = data(:,2); 
8   theta = (x'*x)^(-1)*x'*y; 
9   Reg = theta(1)+theta(2)*data(:,1); 
10  plot(data(:,1),Reg,'LineWidth',2); 
11  hold on 
12  scatter(data(:,1),data(:,2),'filled'); 
 

B. Adam Optimization Code 
1  import matplotlib as mpl 
2  mpl.use('TkAgg') 
3  import matplotlib.pyplot as plt 
4  import tensorflow as tf 
5  import numpy as np 
6  import pandas as pd 
7  from openpyxl import load_workbook 
8  from numpy import genfromtxt 
9   
10 def read_data(): 
11     training_set = 
pd.read_excel('/Users/krystofe/Desktop/timeseries.xlsx', 
header=None, names=['features','labels']) 
12     features_df =  pd.DataFrame({'features' : 
training_set['features'].values}) 
13     labels_df = pd.DataFrame({'labels' : 
training_set['labels'].values})     
14     features = np.array(features_df.values) 
15     labels = np.array(labels_df.values) 
16     return features, labels 
17  
18 def feature_normalize(dataset): 

19     mu = np.mean(dataset,axis=0) 
20     sigma = np.std(dataset,axis=0) 
21     return (dataset - mu)/sigma 
22  
23 def append_bias_reshape(features,labels): 
24     n_training_samples = features.shape[0] 
25     n_dim = features.shape[1] 
26     f = 
np.reshape(np.c_[np.ones(n_training_samples),features],[n_training_
samples,n_dim + 1]) 
27     l = np.reshape(labels,[n_training_samples,1]) 
28     return f, l 
29  
30 features,labels = read_data() 
31 normalized_features = feature_normalize(features) 
32 f, l = append_bias_reshape(normalized_features,labels) 
33 n_dim = f.shape[1] 
34  
35 #Uses the same data set for testing 
36 rnd_indices = np.random.rand(len(f)) < 0.80 
37  
38 train_x = f[rnd_indices] 
39 train_y = l[rnd_indices] 
40 test_x = f[~rnd_indices] 
41 test_y = l[~rnd_indices] 
42  
43 learning_rate = 0.01 
44 training_epochs = 1000 
45 cost_history = np.empty(shape=[1],dtype=float) 
46  
47 X = tf.placeholder(tf.float32,[None,n_dim]) 
48 Y = tf.placeholder(tf.float32,[None,1]) 
49 W = tf.Variable(tf.ones([n_dim,1])) 
50  
51 init = tf.global_variables_initializer() 
52  
53 y_ = tf.matmul(X, W) 
54 cost = tf.reduce_mean(tf.square(y_ - Y)) 
55 training_step = 
tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) 
56  
57 sess = tf.Session() 
58 sess.run(init) 
59  
60 for epoch in range(training_epochs): 
61     sess.run(training_step,feed_dict={X:train_x,Y:train_y}) 
62     cost_history = 
np.append(cost_history,sess.run(cost,feed_dict={X: train_x,Y: 
train_y})) 
63      
64 plt.plot(range(len(cost_history)),cost_history) 
65 plt.axis([0,training_epochs,0,np.max(cost_history)]) 
66 plt.show() 
67  
68 pred_y = sess.run(y_, feed_dict={X: test_x}) 
69 mse = tf.reduce_mean(tf.square(pred_y - test_y)) 
70 print("MSE: %.4f" % sess.run(mse))  
71  
72 fig, ax = plt.subplots() 
73 ax.scatter(test_y, pred_y) 
74 ax.plot([test_y.min(), test_y.max()], [test_y.min(), test_y.max()], 
'k--', lw=3) 
75  
76 ax.set_xlabel('Measured') 
77 ax.set_ylabel('Predicted') 
78 plt.show() 


