

1

Abstract—There are several ways to generate a model for the

specific dataset. Linear regression is the process of generating that
model. This report used two methods to compare the correlation
coefficients. Least squares approximation and Adam Optimization
were the methods used to extract a model. The least squares
approximation was slightly better with R = 0.0327 compared R =
0.0321 for the Adam Optimization.

Index Terms—Adam Optimization, Gradient Decent, Least
Squares Approximation

I. INTRODUCTION
INEAR Regression is the process of modeling the
dependent variables to the independent variables, similar to

mapping. This technique is commonly applied in computer
learning. For this example, models were generated using two
different methods for a dataset of 275 points. The features
associated with the input were irrelevant. The intended purpose
was to select the model that had the greater chance of modeling
the next 30 points with the minimum amount of error. Least
squares approximation and Adam Optimization were the two
methods used to model the dataset. This report will have an
overview of the mathematical theory, how each model was
calculated, and the results. A correlation coefficient (R2) will be
calculated for each linear fit for comparison. The model with
the best value, or fit, will then be formally submitted as the
solution to the given problem.

II. LEAST SQUARES APPROXIMATION
The least square approximation is a linear algebra calculation

to determine an independent value or vector that will minimize
the error [1] [2]. The error, in this case, is the difference
between the fitted model to the dataset values. This process
used the matrix representation of the input features and the
output. The first section will discuss the theory of least squares
approximation followed by the results of using this method on
the provided dataset.

A. Theory
 The least square approximation implements the use of
projections onto the column space. It is important to note the
notation change for the purpose of this report. Equation 1 is
the traditional notation commonly used in textbooks covering
linear algebra. Equation 2 is the updated notation to reflect the
use of the cost function, the predicted x, and predicted y.

 Equation 3 is the Euclidean norm or distance notation. This
projection of 	𝑦# onto Θ was equivalent to the minimized norm
value as listed in Equation 4. Equation 5 is the fundamental
equation for the system that minimizes the solution for 𝑥#.

𝐴𝑥 = 𝑏	 (1)

Θ𝑥# =	𝑦#	 (2)

‖𝑦# − Θ𝑥#‖	 (3)

min
3
‖𝑦# − Θ𝑥#‖ = 𝑃56789𝑦#	 (4)

Θ;Θ𝑥# = Θ;𝑦#	 (5)

B. Setup/Results
The given data was a singular vector of values and was

treated as the output (Equation 6). In order to properly apply the
least squares approximation, the matrix Θ had to be constructed.
A vector of 1’s was needed in the first column, also referred to
as vector Θ=. To complete the matrix, a second column was
added, Θ>, that was the index values for the output. Those index
values were treated as the inputs to the singular feature of the
system of equations (Equation 6). The next step was to
manipulate the fundamental equation to solve for the minimal
value. Equation 7 was the result of the equation manipulation.
The code used to determine the model and plot the results is
listed in the Appendix.

Figure 1 is the result of executing the least squares
approximation code (Appendix). From the plot, it can be
observed that there are several outliers, but the majority of the
values are at and below 60.

Θ = ?
1 1
1 2
⋅ ⋅
1 275

B											𝑦# = ?
5
11
⋅

34.5

B					 (6)

𝑥# = (Θ; ∙ Θ)FG ∙ ΘH ∙ 𝑦#	 (7)

Project 2 – Linear Regression
Rick Alayza, Trincy Thomas Kozhikkadan, Krystofer Newman

L

2

Figure 1: Least Squares Approximation Plot and Dataset Plot

III. ADAM OPTIMIZATION
 Adam Optimization (Adam) is a modified gradient descent
algorithm. A gradient descent is a process to optimize the cost
function. The cost function is the difference between the
predicted value and the actual value [3]. For example: Figure 2
is a contour plot of the cost function [3]. The gradient descent
follows the downward slope of the system towards the
minimum value. The red trace is the path taken by the gradient
descent process. Adam Optimization utilizes moments from
the first and second gradients to have an adaptive learning rate
[5]. The learning rate is simply the step size the system
contour. A small learning rate has the tradeoff of requiring
more iterations before achieving the minimum value. On the
other hand, a large learning rate comes at a risk of missing or
jumping over the minimal values [3]. The gradient descent is
applied in deep learning and computer learning applications
were the dataset is larger enough that Least Squares is not
possible.

A. Adam Optimization
 Adam Optimization was designed to combine advantages
from Adaptive Gradient (AdaGrad) and Root Mean Square
Propagation (RMSProp) [6]. Since Adam is an iterative
process, the critical equations will be discussed in this section
and the code is listed in the Appendix section.

 For each iteration, the learning rate is updated through Wt
by taking the past iteration into account with a set learning
rate, 𝛼, and current moment estimations (Equation 12). This
ability to adjust the learning rate with minimal memory by
only using the previous values and current moment estimates,
is what separates Adam from other gradient descent
optimization. Equation 8 is a proportional example of the
updated learning rate. Equation 9 is the first biased moment
estimate. Equation 10 is the second biased moment estimate.
To remove those biases, Equation 11 will need to be executed.

𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
S𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑠𝑞𝑢𝑎𝑟𝑒	𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

	 (8)

𝑀Y = βG𝑀YFG + (1 − 𝛽G)∇𝐿Y(𝑊YFG)	 (9)

𝑅Y = 	𝛽>𝑅YFG + (1 − 𝛽>)∇𝐿Y(𝑊YFG)>		 (10)

𝑀Yc =	
𝑀Y

1 − 𝛽GY
, 𝑅Yc =

𝑅Y
1 − 𝛽>Y

	 (11)

𝑊Y = 𝑊YFG −
𝛼𝑀Yc

S𝑅Yc + 𝜖
		 (12)

Figure 2: Cost Function Contour Gradient Descent Trace []

B. Setup/Results
 Similar to the execution of the Least Squares
Approximation methods mentioned before, a single vector was
constructed as an input feature for approximation (13)

Θ = ?
1
2
.

275

B											𝑦# = ?
5
11
⋅

34.5

B					 (13)

 Constructing a Linear Regression model using Adam
Optimizer provided an additional method of testing the input
labels to explore other options and algorithms in addition to
Least Squares Approximation. Using open sourced python
code [4] and libraries such as TensorFlow and NumPy,
creating a model to evaluate the label data vectors provided
additional methods of evaluating the time series data. The time
series vector 𝑦# was split into training and test data for
evaluation purposes. From there the setup of the Linear
Regression model using Adam was fairly similar to the Least
Squares Approximation in defining the model, epochs, and
learning rates. Figure 3 shows the output of the Adam model,
because some data is used in testing and training the model,
the graph is less dense than that of the Least Squares Data Plot
in Figure 1.

3

Figure 3: Adam Optimization Plot and Dataset Plot

IV. CONCLUSION
 These two methods, Least Squares and Adam, were selected
to compare an analytical process to an iterative process to fit a
model to a given dataset. The winner will be used to predict
the next 30 values, per project instructions. Both methods
were relatively simple to execute and generated results in a
short amount of time. That was expected since the dataset only
consisted of 275 values and only one input feature. A
correlation coefficient was calculated for each result and used
as a comparison. It is important to note that each method has
strengths and weakness. Table 1 lists the strengths and
weakness along with the correlation coefficient of each
method. According to Table 1, the Least Square
Approximation had the highest correlation coefficient.

Table 1: Strengths, Weaknesses, and Results for each Method

 Strength Weakness Corr .Coeff

Least
No learning rate
No iterations

Large dataset
Matrix inverse
Redundant
 features

0.0327

Adam
Large dataset
Adaptable
 learning rate

Many
iterations
Time/iteration

0.0321

V. SUBMISSION
 The following section is the official submission for Project
2 with code and instructions. Figure 4 is the plot of the
modified Matlab code. Equation 14 is the hypothesis equation
that lists the values of Θ. Table 2 lists the prediction values for
the next 30 points.
 The load instructions are simple. Open Matlab and place the
excel file for the dataset into the file path. Then copy and paste
the modified Matlab script and save. Run the Matlab script.
The script will output a plot (Figure 4) and save all the
predicted values in variable Reg. Once Reg is saved in the

workspace, it can be applied to the new dataset to determine
error.

Figure 4: Submission Plot

ℎg(𝑥) = 35.4720 + 0.0871𝑥	 (14)

Table 2: Submission Prediction Data Points

x1 y1 x2 y2 x3 y3

276 59.52 286 60.3913 296 61.2627

277 59.6072 287 60.4785 297 61.3498

278 59.6943 288 60.5656 298 61.4369

279 59.7814 289 60.6527 299 61.524

280 59.8686 290 60.7399 300 61.6112

281 59.9557 291 60.827 301 61.6983

282 60.0428 292 60.9141 302 61.7854

283 60.13 293 61.0013 303 61.8726

284 60.2171 294 61.0884 304 61.9597

285 60.3042 295 61.1755 305 62.0468

A. Matlab Script for Submission
filename = "project2_time series
data_students.xlsx";
data = xlsread(filename);
temp = ones(275,1);
x = [temp data(:,1)];
y = data(:,2);
theta = (x'*x)^(-1)*x'*y
prediction = (1:1:275+30); %Dataset plus
30 prediction points
Reg = theta(1)+theta(2)*prediction;
plot(prediction,Reg,'LineWidth',2);
hold on
scatter(data(:,1),data(:,2),'filled');

4

VI. REFERENCES

[1] A. A. Rodriguez, "Least Square, Minimum Norm, and Projection

Problems," in Linear Systems - Analysis and Design, Tempe,
Control3D, L.L.C, 2004, pp. 370-372.

[2] G. Strang, "Least Square Approximation," in Introduction to
Linear Algabra, Wellesley, Wellesley-Cambridge Press, 2009,
pp. 218-223.

[3] A. Ng, "Lecture 4.6 - Linear Regression with Multiple Variables |
Normal Equation," YouTube, 2016.

[4] R. Norouzy, "Linear regression in tensorflow," Kaggle Inc, Feb
2018. [Online]. Available:
https://www.kaggle.com/rohumca/linear-regression-in-
tensorflow. [Accessed Sept. 2018].

[5] D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic
Optimization," in International Conference of Learning
Representations (ICLR), 2015.

[6] N. Cohen, "The Hebrew University of Jerusalem," 18 Oct. 2015.
[Online]. Available:
https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_re
source/content/1/adam_pres.pdf. [Accessed 18 Sept. 2018].

VII. APPENDIX

A. Least Squares Code
1
2 filename = "project2_time series data_students.xlsx";
3 data = xlsread(filename);
4
5 temp = ones(275,1);
6 x = [temp data(:,1)];
7 y = data(:,2);
8 theta = (x'*x)^(-1)*x'*y;
9 Reg = theta(1)+theta(2)*data(:,1);
10 plot(data(:,1),Reg,'LineWidth',2);
11 hold on
12 scatter(data(:,1),data(:,2),'filled');

B. Adam Optimization Code
1 import matplotlib as mpl
2 mpl.use('TkAgg')
3 import matplotlib.pyplot as plt
4 import tensorflow as tf
5 import numpy as np
6 import pandas as pd
7 from openpyxl import load_workbook
8 from numpy import genfromtxt
9
10 def read_data():
11 training_set =
pd.read_excel('/Users/krystofe/Desktop/timeseries.xlsx',
header=None, names=['features','labels'])
12 features_df = pd.DataFrame({'features' :
training_set['features'].values})
13 labels_df = pd.DataFrame({'labels' :
training_set['labels'].values})
14 features = np.array(features_df.values)
15 labels = np.array(labels_df.values)
16 return features, labels
17
18 def feature_normalize(dataset):

19 mu = np.mean(dataset,axis=0)
20 sigma = np.std(dataset,axis=0)
21 return (dataset - mu)/sigma
22
23 def append_bias_reshape(features,labels):
24 n_training_samples = features.shape[0]
25 n_dim = features.shape[1]
26 f =
np.reshape(np.c_[np.ones(n_training_samples),features],[n_training_
samples,n_dim + 1])
27 l = np.reshape(labels,[n_training_samples,1])
28 return f, l
29
30 features,labels = read_data()
31 normalized_features = feature_normalize(features)
32 f, l = append_bias_reshape(normalized_features,labels)
33 n_dim = f.shape[1]
34
35 #Uses the same data set for testing
36 rnd_indices = np.random.rand(len(f)) < 0.80
37
38 train_x = f[rnd_indices]
39 train_y = l[rnd_indices]
40 test_x = f[~rnd_indices]
41 test_y = l[~rnd_indices]
42
43 learning_rate = 0.01
44 training_epochs = 1000
45 cost_history = np.empty(shape=[1],dtype=float)
46
47 X = tf.placeholder(tf.float32,[None,n_dim])
48 Y = tf.placeholder(tf.float32,[None,1])
49 W = tf.Variable(tf.ones([n_dim,1]))
50
51 init = tf.global_variables_initializer()
52
53 y_ = tf.matmul(X, W)
54 cost = tf.reduce_mean(tf.square(y_ - Y))
55 training_step =
tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
56
57 sess = tf.Session()
58 sess.run(init)
59
60 for epoch in range(training_epochs):
61 sess.run(training_step,feed_dict={X:train_x,Y:train_y})
62 cost_history =
np.append(cost_history,sess.run(cost,feed_dict={X: train_x,Y:
train_y}))
63
64 plt.plot(range(len(cost_history)),cost_history)
65 plt.axis([0,training_epochs,0,np.max(cost_history)])
66 plt.show()
67
68 pred_y = sess.run(y_, feed_dict={X: test_x})
69 mse = tf.reduce_mean(tf.square(pred_y - test_y))
70 print("MSE: %.4f" % sess.run(mse))
71
72 fig, ax = plt.subplots()
73 ax.scatter(test_y, pred_y)
74 ax.plot([test_y.min(), test_y.max()], [test_y.min(), test_y.max()],
'k--', lw=3)
75
76 ax.set_xlabel('Measured')
77 ax.set_ylabel('Predicted')
78 plt.show()

