

Machine Vision for Safer Self Driving Cars in

Construction Zones

Rick Alayza, Trincy Thomas Kozhikkadan, Krystofer Newman

Abstract— Construction Zones are often very different from

one another, making automatic road sign detection and

navigation in these areas a challenge for self-driving cars. In this

project our goal is to develop a Convolution Neural Network

(CNN) that can correctly classify road signs based on the color

and geometric information in the input image or video and use

the results for more accurate and safer navigation in self-driving

cars

Keywords—Convolution Neural Network, Transfer Learning,

Road sign detection, R-CNN, Faster R-CNN

I. INTRODUCTION

 Automatic road sign detection is an important feature of

self-driving cars. Safety of the self-driving cars depends on the

car’s ability to accurately recognize road signs and make

decisions based on the information obtained from the road

sign. An example would be being able to read a vertical

channelizing road sign that is commonly used in marking

paths during road construction [3]. By taking advantages of

the special characteristics of traffic signs, typically the color

and geometric information in the images or video to classify

the sign and analyze it to help the car make decisions related

to navigation [1]. The vertical channeling sign is easily

recognizable by human drivers and relays vital information in

the sign’s geometry. This type of sign is generally used in

road construction zones. The intended purpose of this sign is

to mark the path for traffic to follow. The angle of the

stripped lines also has a significance. These lines slope down

toward the path. In Figure 1, the channeling sign is indicating

that the path is to the left of the sign. The system should be

able to maintain a good level of accuracy to detect and

recognize road signs under varying lighting conditions,

reduced clarity due to factors like bad weather or the view

angles from the car-mounted cameras to the traffic signs may

lead to artificially rotated and distorted images [2]. The

important problem statement is how can machine vision

correctly classify and use this information for a self-driving

car application. The CNN implemented in our project will also

be able to classify road signs in a video input providing a more

practical solution for self-driving cars.

.

Figure 1: Example of vertical channelizing road signs used in

construction zones [3]

II. APPROACH - DESCRIPTION

 The success of traditional methods for solving computer
vision problems heavily depends on the feature extraction
process. But Convolutional Neural Networks (CNN) have
provided an alternative for automatically learning the domain
specific features through the use of region of interest (ROI).
Now every problem in the broader domain of computer vision
is re-examined from the perspective of this new methodology
[4]. Various object detection methods for traffic-sign
classification based on SVMs [11] and sparse representations
are used but recently, CNN has outperformed the existing
methods since the launch of the German traffic-sign detection
[12]. Auto Encoder, sparse coding, Restricted Boltzmann
Machine, Deep Belief Networks and Convolutional neural
networks is commonly used models in deep learning [5]. Image
classification being one of the main tasks of our project, we
chose CNN as our approach to solve the problem because
among different type of models, Convolutional neural
networks have demonstrated high performance on image
classification [5]. Convolutional neural networks with fixed
and learnable layers can be used for detection and recognition.
The fixed number of layer can reduce the amount of interest
areas to detect and crop the boundaries very close to the
borders of traffic signs [13]. The learnable layers can increase
the accuracy of detection significantly [13].

A. Transfer Learning

 The Transfer Learning approach was used to implement
the CNN. Transfer learning is a deep learning approach in
which a model that has been trained for one task is used as a
starting point to train a model for similar task. Fine-tuning a
network with transfer learning is usually much faster and easier
than training a network from scratch. Transfer learning is a

popular technique because it allows to train models using
relatively little labeled data by leveraging popular models that
have already been trained on large datasets [6]. Traditionally, a
CNN is trained with dataset that consists of thousands of
images with a specified number of classes, or classifications.
Transfer learning allows for the user to use an established CNN
and repurpose it as a specialized CNN for detection as depicted
in Figure 3. This ability to use an existing, well defined,
established CNN reduces the number images in the dataset
from the thousands to only dozens. This solution was heavily
researched due to the lack of defined datasets that included
these channeling road signs. Transfer learning can reduce
training time and compute resources. With transfer learning,
the model does not need to be trained for as many epochs (a
full training cycle on the entire dataset) as a new model would
require. The graph below shows the network performance for
models with transfer learning and models trained from scratch.
With transfer learning, it is possible to achieve a higher model
accuracy in a shorter time [6]. With the ability greatly reduce
the number of images required to train the CNN, a dataset was
generated.

Figure 2: Network performance of training from scratch and transfer

learning [6]

Figure 3: Transfer Learning Workflow [6]

III. APPROACH ALGORITHM/METHODS

Matlab 2018b was main tool used for implementing the
CNN model. The project required installation of Image
Processing, Computer Vision System, Statistics and Machine
Learning, Parallel Computing toolboxes in Matlab. The
pretrained CNN is loaded in Matlab. This CNN has been

pretrained with the CIFAR-10 dataset. The CIFAR-10 dataset
consists of 60000 32x32 color images in 10 classes, with 6000
images per class [7]. The network has learned rich feature
representations for a wide range of images. The network takes
an image as input and outputs a label for the object in the
image together with the probabilities for each of the object
categories [8]. To retrain the pretrained network to classify new
images, the last few layers of the network are replaced. The
final layers are set to match the number of classes in the new
data set. The images in the training dataset are labelled using
the image labeler application in Matlab. The Image Labeler
app labels rectangular regions of interest (ROIs) for object
detection, pixels for semantic segmentation, and scenes for
image classification [9]. Using the Image Labeler app, we
interactively specified ‘Pass left’ and ‘Pass Right’ labels to the
images in the training dataset. The CNN was then trained using
this labeled collection of training images. The CNN was then
tested with the images in the test dataset.

A. Established Data – D1

 Initial step to implement transfer learning is to select and

load a pretrained network. The classification layers for the new

task are replaced based on the relevant application followed by

fine-tuning the weights depending on the new task and data

available. The model is then tested on the test dataset to check

accuracy [6]. This section will provide an abbreviated setup

process for the neural network. More specific instructions are

listed in the associated website [8]. The first step was to

install the appropriate toolboxes MATLAB would need to

create and train the convolution neural network. Neural

Network, Statistics and Machine Learning, Computer Vision

System, and Image Processing Toolboxes were required for

the experiment. The Parallel Computing Toolbox was option

since this toolbox only lowers the processing time during

training. Along with the toolboxes, a dataset of 50,000 images

as loaded into the workspace. In older version of MATLAB,

this dataset was download but comes part of the Image

Processing Toolbox in the current version. The sample dataset

consisted of 10 categories. Figure 4 is a sample of the dataset

generated using the supplied MATLAB commands in the

tutorial. It is important to note that the images in Figure 4 are

relatively small and have a low resolution. This is intentional

because larger images at a higher resolution would

significantly increase training times and be beyond the scope

of the tutorial.

 The next step was to create the convolutional neural

network (CNN). The Neural Network Toolbox simplifies this

process since the CNN is a layered network. This experiment

used seven layers. Image input layer, 2D convolution layer,

and classification output layer are some examples of the

layers. The commands listed in the tutorial can be repeated

with downsampling to create a deeper network. This

downsampling may impact training if important or useful

information is discarded. The experiment did not repeat the

layering commands. A single execution was used to create the

CNN.

 Once the neural network was created, it needed to be

trained. The training consisted of the CNN scanning the

layers and formulating classifications. Those formulations

were then compared to the classifications in the dataset to

calculate the CNN accuracy. The tutorial offered two options:

to load training data or to execute the training. Loading the

training data was not as accurate in object detection but

required less processing time. Executed training averaged

around 45-50 minutes. The training was separated into two

different runs. The first training run was performed on the

loaded dataset. This training performed 15,600 iterations and

lasted 55 minutes. The average accuracy achieved was 85%.

This percentage can be increased with a deeper network

through more trainings. To correctly ensure that the CNN was

created/trained correctly, a validation was executed.

Figure 4: Sample of D1 Dataset Images

B. Specialized Dataset – D2

The second dataset was designed to convert the established
CNN to a Region Convolutional Neural Network (R-CNN).
This type of CNN would analyze image regions to detect and
identify objects. This dataset was originally a collection of
images of construction zone road signs downloaded using
Google ™. This dataset was comprised of 34 still images with
two classes. PL for Pass Left and PR for Pass Right. The
training from this dataset netted good results when tested
against other still images. When tested against a video, the R-
CNN was not able to detect the signs and also failed to behave
correctly. Figure 6 and Figure7 are examples actual output
from the R-CNN when tested on still images. The inability to
analyze video required that the team reevaluate what type of
neural network to implement. Research led to the concept of a
Faster R-CNN (FR-CNN). The FR-CNN operates in a similar
fashion as a R-CNN with the exception of how regions are

treated. In a R-CNN, a different algorithm is used to extract a
region proposal, area that may have the desired object. This
algorithm operates outside the CNN and will lead to a
bottleneck effect when images are in high resolution or speed
of execution is vital. For this instance, execution speed was the
limiting factor and contributor to the implementation failure. A
FR-CNN trains the ROI algorithm into the neural network.
This training greatly reduces execution, image analysis, but
exponentially increases training time. For example: The R-
CNN was trained in 20 minutes while the FR-CNN was trained
in 2 hours for the same dataset. The next process was to expand
the dataset from 34 images. This was done using Matlab’s
Ground Truth Labeler App (Figure 5) to mark ROI’s on a
video sample. Using the application, the dataset grew from 34
images to well over 140 images. With that increase in the
dataset, training also increased to 3.5 hours.

Figure 5: Matlab Ground Truth Labeler Application

Listed below was the training output for the FR-CNN. The
training was divided into 4 steps. Step 1 trained a neural
network to act as a Regional Proposal Network (RPN). The
function of the RPN was to analyze the image and generated
possible areas that may contain an object, PR or PL, and input
those regions into the R-CNN for classification. Step 2 re-
trained the R-CNN using the regions extracted by the newly
developed RPN. Step 3 and Step 4 are a repeat of the first two
steps to enhance both network accuracies. The dataset was
divided into training and test sub -dataset. The mini-batch
accuracy is the accuracy of the network, either RPN or R-
CNN, on the test sub-dataset.

IV. RESULTS

 The final step for this laborious report was to test eh
final FR-CNN. The first run of tests was against images and
video used to train the network. The second test was on video
that was not part of the training.

A. Duplication of Reference

 The final FR-CNN was successfully able to identify

and label ‘Pass left’ and ‘Pass Right’ road signs for still

images R-CNN (Figure 6 and Figure 7). The FR-CNN

developed could successfully classify and label ‘pass left’ and

‘pass right’ signs in the images belonging to our test data set

with a good amount of accuracy similar to the examples in the

Matlab documentation related to transfer learning which we

used as one our references [10]. The FR-CNN could also

correctly identify and label multiple objects in an image which

was a limitation not addressed in the Matlab documentation.

This was remedied by changing options in the FR-CNN

output. The CNN could also differentiate between pass left

and pass right signs in the same image, identify different color

and stripe patterns. Figure 8 is an example of the output when

a video is used as an input. This section of video was also used

in the training (Figure 5). Here, the FR-CNN was able to

classify the objects in the image but had overlapping

boundaries and low accuracy. The sign on the left was

identified with 3 separate boundary boxes with accuracies

ranging from 64% to 87%. This was unacceptable and caused

for the second training of the FR-CNN with the same dataset

as the original training. Figure 9 is the output of the FR-CNN

on the same section of video as Figure 8 after a second

training session. It is evident to the simplest of minds that the

second training made a more robust FR-CNN. I was marked

as a success with the increase in accuracies and the decrease

of overlapping boundary boxes.

Figure 6: Labeled output image of different stripe pattern and color

Figure 7: Labeled output image showing correct identification of

pass left and pass right signs

Figure 8: FR-CNN Video Output after 1 training

Figure 9: FR-CNN Video Output after 2 trainings

B. Tests on New Data

 The FR-CNN was tested on video that was not part of the

training dataset. The FR-CNN had an output that better than

expected. The team originally expected that the FR-CNN

would not be able to identify any of the objects. In general, the

FR-CNN was able to classify all the target objects in the

video. Unfortunately, the majority of the objects were

incorrectly classified by the FR-CNN. Figure 10 is an example

of a correct classification. Here, the sign is a pass right object

marker. Figure 11 is an example of an incorrect classification

and an incorrect boundary box. Interestingly, Figure 12 is

what really made this test and all the hassle of this project

worth the work. When Rick Alayza was recording this video

while driving, he was not aware of the improperly placed sign

by some unknow construction worker. This was only observed

when analyzing the FR-CNN video output. The FR-CNN

correctly classified the road sign when the human driver failed

to do the same after 20 plus years for training.

Figure 10: Second Test of FR-CNN Output Sample 1

Figure 11: Second Test of FR-CNN Output Sample 2

Figure 12: Second Test of FR-CNN Output Sample 3

V. CONCLUSIONS AND DISCUSSIONS

Transfer learning allowed for targeted image detection. F-
RCNN was trained using 140 sample images rather than
thousands. All sample images were taken from one video input
and some random internet search for still images. The FR-CNN
was able to correctly, with a high level of accuracy, classify all
objects when the training video was used as an input. It is
important to note that 140 object instances were extracted from
the video for training, but the FR-CNN was able to identify
more than 350 instances in the entire training video. That is a
relatively good return when faced with possible requirement of
manually classifying thousands of images just to for an
inaccurate, rudimentary CNN. Training with images and
ground truth tables from a broader set will only increase the
FR-CNN’s versatility and accuracy.

REFERENCES

[1] A. de la Escalera, L. Moreno, E.A. Puente, M.A. Salichs, “Neural

traffic sign recognition for autonomous vehicles”, 20th Annual
Conference of IEEE Industrial Electronics.

[2] Hsiu-Ming Yang, Chao-Lin Liu, Kun-Hao Liu, and Shang-Ming Huang,
“Traffic Sign Recognition in Disturbing Environments”

[3] ThreeD Plastics, "Traffic Work," Reynold Group Web, 2018. [Online].
Available: http://www.trafficwks.com/products/vertical-panels.
[Accessed 13 Sept. 2018].

[4] Neena Aloysius ; M. Geetha, “A review on deep convolutional neural
networks”, 2017 International Conference on Communication and
Signal Processing (ICCSP)

[5] Tianmei Guo ; Jiwen Dong ; Henjian Li ; Yunxing Gao, “Simple
convolutional neural network on image classification”, 2017 IEEE 2nd
International Conference on Big Data Analysis (ICBDA)

[6] https://www.mathworks.com/discovery/transfer-learning.html

[7] https://www.cs.toronto.edu/~kriz/cifar.html

[8] https://www.mathworks.com/help/deeplearning/examples/get-started-
with-transfer-learning.html

[9] https://www.mathworks.com/help/vision/ug/get-started-with-the-image-
labeler.html

[10] https://blogs.mathworks.com/pick/2017/02/24/deep-learning-transfer-
learning-in-10-lines-of-matlab-code/

[11] S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gomez-
Moreno, and F. Lopez-Ferreras. Road-sign detection and recognition
based on support vector machines. Intelligent Transportation Systems,
IEEE Transactions on, 8(2):264–278, June 2007

[12] Zhe Zhu, Dun Liang, Songhai Zhang, “Traffic-Sign Detection and
Classification in the Wild”

[13] Yihui Wu ; Yulong Liu ; Jianmin Li ; Huaping Liu ; Xiaolin Hu,
“Traffic sign detection based on convolutional neural networks”, 2013
International Joint Conference on Neural Networks (IJCNN)

https://www.mathworks.com/help/deeplearning/examples/get-started-with-transfer-learning.html
https://www.mathworks.com/help/deeplearning/examples/get-started-with-transfer-learning.html
https://www.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.html
https://www.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.html

VI. APPENDIX

A. Matlab Code

%%

% Download Image Data - CIFAR-10

cifar10Data = tempdir;

url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';

helperCIFAR10Data.download(url,cifar10Data);

%%

% Load CIFAR-10 Training

[trainingImages, trainingLabels, testImages, testLabels]=...

 helperCIFAR10Data.load(cifar10Data);

%%

% Data Sample

size(trainingImages)

numImageCategories = 10;

categories(trainingLabels)

figure

thumbnails = trainingImages(:,:,:, 1:100);

montage(thumbnails)

%%

% Create Image Layers

[height, width,numChannels,~] = size(trainingImages);

imageSize = [height width numChannels];

inputLayer = imageInputLayer(imageSize)

% Convolution Layer Parameters

filterSize = [5 5];

numFilters = 32;

middleLayers = [

 convolution2dLayer(filterSize, numFilters, 'Padding', 2)

 reluLayer()

 maxPooling2dLayer(3, 'Stride', 2)

 convolution2dLayer(filterSize, numFilters, 'Padding', 2)

 reluLayer()

 maxPooling2dLayer(3, 'Stride',2)

 convolution2dLayer(filterSize, 2 * numFilters, 'Padding', 2)

 reluLayer()

 maxPooling2dLayer(3, 'Stride',2)

]

% CNN Final Layer

finalLayers = [

 fullyConnectedLayer(64)

 reluLayer

 fullyConnectedLayer(numImageCategories)

 softmaxLayer

 classificationLayer

]

%%

% Combine Input, Middle, and Final Layers

layers = [

 inputLayer

 middleLayers

 finalLayers

]

% Initialize Convolution Layer Weights

layers(2).Weights = 0.0001 * randn([filterSize numChannels

numFilters]);

%%

% Train CNN - Set Network Training Options

opts = trainingOptions('sgdm', ...

 'Momentum', 0.9, ...

 'InitialLearnRate', 0.001, ...

 'LearnRateSchedule', 'piecewise', ...

 'LearnRateDropFactor', 0.1, ...

 'LearnRateDropPeriod', 8, ...

 'L2Regularization', 0.004, ...

 'MaxEpochs', 40, ...

 'MiniBatchSize', 128, ...

 'Verbose', true,...

 'Plots','training-progress');

%%

% Train CNN - Execute Training (20-30 minutes)

%true to train network (20-30 minutes)

%false to load pre-trained network

doTraining = true;

if doTraining

 % Train a network.

 cifar10Net = trainNetwork(trainingImages, trainingLabels, layers,

opts);

else

 % Load pre-trained detector for the example.

 load('rcnnStopSigns.mat','cifar10Net')

end

%% *****

% Validate Training - Learned Edges

w = cifar10Net.Layers(2).Weights;

w = rescale(w);

figure

montage(w)

%% *****

% Validate Training - Test Set

YTest = classify(cifar10Net, testImages);

accuracy = sum(YTest == testLabels)/numel(testLabels)

%%

% Load Truth Table from Labeler App in Matlab

TruthTable = objectDetectorTrainingData(gTruth);

summary(TruthTable)

%%

%Train Fast R-CNN for New Sign Detection

%Changes categories from 10 to 3 -> PL,PR,Background

doTraining = true;

if doTraining

 % training options

 options = trainingOptions('sgdm', ...

 'MiniBatchSize', 30, ...

 'InitialLearnRate', 1e-3, ...

 'LearnRateSchedule', 'piecewise', ...

 'LearnRateDropFactor', 0.1, ...

 'LearnRateDropPeriod', 100, ...

 'MaxEpochs', 10, ...

 'VerboseFrequency', 200);

 % Train an R-CNN object detector. This will take several minutes.

 rcnn = trainFasterRCNNObjectDetector(TruthTable, cifar10Net,

options, ...

 'NegativeOverlapRange', [0 .3], 'PositiveOverlapRange',[.6 1])

else

 % pre-trained network for the example.

 load('rcnnStopSigns.mat','rcnn')

end

%%

% Test R-CNN Detector - Random Image

boxColor = [];

ann = [];

testImage = imread('OML_7.png');

%imageSize = size(testImage);

[bboxes,score,label] = detect(rcnn,testImage,'SelectStrongest',true);

for i = 1:length(score)

 ann{i} = sprintf('%s: %f', label(i), score(i));

 %split annotations for red or yellow boxes

 if bboxes(i) > imageSize(1)*.4 && label(i) == "PL"

 boxColor = [boxColor;([255 0 0])];

 elseif bboxes(i) < imageSize(1)*.6 && label(i) == "PR"

 boxColor = [boxColor;([255 0 0])];

 else

 boxColor = [boxColor;([255 255 0])];

 end

end

outputImage = insertObjectAnnotation(testImage, 'rectangle', ...

 bboxes, ann,...

 'LineWidth',5,...

 'Color',boxColor);

%Annotations format: [x,y,width,height]

% x=0 & y=0 is the upper left corner of the image

figure

imshow(outputImage)

%%

% Setup Video Reader and Display

videoFReader = vision.VideoFileReader('TestVideo480.mp4',...

 'ImageColorSpace','RGB');

videoFrame = videoFReader(); %Get first frame of video file

%Use H.265 10-bit(x265) codec in Handbrake

%Test on video play back frame.

%If codec is good, image will have color and not distorted.

imshow(videoFrame)

videoPlayer = vision.DeployableVideoPlayer;

%%

% Setup Video Writer

videoFWriter =

vision.VideoFileWriter('FinalProject6.avi','FrameRate',...

 videoFReader.info.VideoFrameRate);

videoFWriter.VideoCompressor='DV Video Encoder';

%%

% Test Fast RCNN on video file

while ~isDone(videoFReader)

 image = step(videoFReader);

 im = im2uint8(image);

 [bboxes,score,label] = detect(rcnn,im,...

 'SelectStrongest',true,...

 'NumStrongestRegions',1000);

 %[bboxes,score] = detect(rcnn,im);

 if isempty(score) == 1

 label = 'NULL';

 score = 0;

 bboxes = [35 35 100 100];

 end

 ann = [];

 boxColor = [];

 for i = 1:length(score)

 ann{i} = sprintf('%s: %f', label(i), score(i));

 if label(i) == "PL"

 boxColor = [boxColor;([255 0 0])];

 else

 boxColor = [boxColor;([255 255 0])];

 end

 end

 outputImage = insertObjectAnnotation(image, 'rectangle',...

 bboxes, ann);

 step(videoPlayer, outputImage);

 step(videoFWriter,outputImage);

end

release(videoFReader)

release(videoPlayer)

release(videoFWriter)

B. Training Diary

% Download Image Data - CIFAR-10

cifar10Data = tempdir;
url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';

helperCIFAR10Data.download(url,cifar10Data);

%%
% Load CIFAR-10 Training

[trainingImages, trainingLabels, testImages, testLabels]=...

 helperCIFAR10Data.load(cifar10Data);
%%

% Data Sample

size(trainingImages)

ans =

 32 32 3 50000

numImageCategories = 10;
categories(trainingLabels)

ans =

 10×1 cell

array

 {'airplane' }

 {'automobile'}
 {'bird' }

 {'cat' }
 {'deer' }

 {'dog' }

 {'frog' }
 {'horse' }

 {'ship' }

 {'truck' }

figure

thumbnails = trainingImages(:,:,:, 1:100);
montage(thumbnails)

% Create Image Layers

[height, width,numChannels,~] = size(trainingImages);
imageSize = [height width numChannels];

inputLayer = imageInputLayer(imageSize)

inputLayer =

 <a href="matlab:helpPopup nnet.cnn.layer.ImageInputLayer" style="font-
weight:bold">ImageInputLayer with properties:

 Name: ''
 InputSize: [32 32 3]

 Hyperparameters
 DataAugmentation: 'none'

 Normalization: 'zerocenter'

% Convolution Layer Parameters

filterSize = [5 5];

numFilters = 32;
middleLayers = [

 convolution2dLayer(filterSize, numFilters, 'Padding', 2)

 reluLayer()

 maxPooling2dLayer(3, 'Stride', 2)
 convolution2dLayer(filterSize, numFilters, 'Padding', 2)

 reluLayer()

 maxPooling2dLayer(3, 'Stride',2)
 convolution2dLayer(filterSize, 2 * numFilters, 'Padding', 2)

 reluLayer()

 maxPooling2dLayer(3, 'Stride',2)
]

middleLayers =

 9x1 <a href="matlab:helpPopup nnet.cnn.layer.Layer" style="font-

weight:bold">Layer array with layers:

 1 '' Convolution 32 5x5 convolutions with stride [1 1] and padding [2

2 2 2]
 2 '' ReLU ReLU

 3 '' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0

0 0]
 4 '' Convolution 32 5x5 convolutions with stride [1 1] and padding [2

2 2 2]

 5 '' ReLU ReLU

 6 '' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0

0 0]

 7 '' Convolution 64 5x5 convolutions with stride [1 1] and padding [2
2 2 2]

 8 '' ReLU ReLU
 9 '' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0

0 0]

% CNN Final Layer
finalLayers = [

 fullyConnectedLayer(64)

 reluLayer
 fullyConnectedLayer(numImageCategories)

 softmaxLayer

 classificationLayer
]

finalLayers =

 5x1 <a href="matlab:helpPopup nnet.cnn.layer.Layer" style="font-

weight:bold">Layer array with layers:

 1 '' Fully Connected 64 fully connected layer

 2 '' ReLU ReLU
 3 '' Fully Connected 10 fully connected layer

 4 '' Softmax softmax

 5 '' Classification Output crossentropyex
% Combine Input, Middle, and Final Layers

layers = [

 inputLayer
 middleLayers

 finalLayers

]

layers =

 15x1 <a href="matlab:helpPopup nnet.cnn.layer.Layer" style="font-

weight:bold">Layer array with layers:

 1 '' Image Input 32x32x3 images with 'zerocenter' normalization

 2 '' Convolution 32 5x5 convolutions with stride [1 1] and

padding [2 2 2 2]
 3 '' ReLU ReLU

 4 '' Max Pooling 3x3 max pooling with stride [2 2] and padding

[0 0 0 0]
 5 '' Convolution 32 5x5 convolutions with stride [1 1] and

padding [2 2 2 2]

 6 '' ReLU ReLU
 7 '' Max Pooling 3x3 max pooling with stride [2 2] and padding

[0 0 0 0]

 8 '' Convolution 64 5x5 convolutions with stride [1 1] and
padding [2 2 2 2]

 9 '' ReLU ReLU

 10 '' Max Pooling 3x3 max pooling with stride [2 2] and padding
[0 0 0 0]

 11 '' Fully Connected 64 fully connected layer

 12 '' ReLU ReLU
 13 '' Fully Connected 10 fully connected layer

 14 '' Softmax softmax

 15 '' Classification Output crossentropyex
% Initialize Convolution Layer Weights

layers(2).Weights = 0.0001 * randn([filterSize numChannels numFilters]);

% Train CNN - Set Network Training Options
opts = trainingOptions('sgdm', ...

 'Momentum', 0.9, ...

 'InitialLearnRate', 0.001, ...
 'LearnRateSchedule', 'piecewise', ...

 'LearnRateDropFactor', 0.1, ...

 'LearnRateDropPeriod', 8, ...
 'L2Regularization', 0.004, ...

 'MaxEpochs', 40, ...

 'MiniBatchSize', 128, ...

 'Verbose', true,...

 'Plots','training-progress');

% Train CNN - Execute Training (20-30 minutes)
%true to train network (20-30 minutes)

%false to load pre-trained network
doTraining = true;

if doTraining
 % Train a network.

 cifar10Net = trainNetwork(trainingImages, trainingLabels, layers, opts);

else
 % Load pre-trained detector for the example.

 load('rcnnStopSigns.mat','cifar10Net')

end
Training on single GPU.

Initializing image normalization.

|===
=================================|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base

Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |

|===

=================================|
| 1 | 1 | 00:00:02 | 8.59% | 2.3026 | 0.0010 |

| 1 | 50 | 00:00:04 | 13.28% | 2.3022 | 0.0010 |

| 1 | 100 | 00:00:05 | 9.38% | 2.3027 | 0.0010 |
| 1 | 150 | 00:00:07 | 11.72% | 2.3016 | 0.0010 |

| 1 | 200 | 00:00:08 | 14.84% | 2.2984 | 0.0010 |

| 1 | 250 | 00:00:10 | 12.50% | 2.2823 | 0.0010 |
| 1 | 300 | 00:00:11 | 15.63% | 2.2488 | 0.0010 |

| 1 | 350 | 00:00:13 | 20.31% | 2.2037 | 0.0010 |

| 2 | 400 | 00:00:14 | 14.84% | 2.1734 | 0.0010 |
| 2 | 450 | 00:00:16 | 28.91% | 1.9965 | 0.0010 |

| 2 | 500 | 00:00:17 | 32.81% | 1.8913 | 0.0010 |

| 2 | 550 | 00:00:19 | 28.91% | 1.8289 | 0.0010 |
| 2 | 600 | 00:00:20 | 34.38% | 1.8000 | 0.0010 |

| 2 | 650 | 00:00:22 | 35.16% | 1.6815 | 0.0010 |

| 2 | 700 | 00:00:23 | 42.97% | 1.6240 | 0.0010 |

| 2 | 750 | 00:00:24 | 45.31% | 1.5761 | 0.0010 |

| 3 | 800 | 00:00:26 | 35.94% | 1.6299 | 0.0010 |

| 3 | 850 | 00:00:27 | 46.09% | 1.3647 | 0.0010 |
| 3 | 900 | 00:00:29 | 42.19% | 1.6671 | 0.0010 |

| 3 | 950 | 00:00:30 | 45.31% | 1.5126 | 0.0010 |

| 3 | 1000 | 00:00:32 | 42.97% | 1.5908 | 0.0010 |
| 3 | 1050 | 00:00:33 | 58.59% | 1.3326 | 0.0010 |

| 3 | 1100 | 00:00:35 | 57.03% | 1.1875 | 0.0010 |

| 3 | 1150 | 00:00:36 | 46.09% | 1.5562 | 0.0010 |
| 4 | 1200 | 00:00:38 | 52.34% | 1.4292 | 0.0010 |

| 4 | 1250 | 00:00:39 | 54.69% | 1.1906 | 0.0010 |

| 4 | 1300 | 00:00:41 | 48.44% | 1.3944 | 0.0010 |

| 4 | 1350 | 00:00:42 | 58.59% | 1.1588 | 0.0010 |
| 4 | 1400 | 00:00:44 | 53.13% | 1.2898 | 0.0010 |

| 4 | 1450 | 00:00:45 | 55.47% | 1.2385 | 0.0010 |

| 4 | 1500 | 00:00:47 | 54.69% | 1.3089 | 0.0010 |
| 4 | 1550 | 00:00:48 | 53.91% | 1.2493 | 0.0010 |

| 5 | 1600 | 00:00:50 | 53.91% | 1.2567 | 0.0010 |

| 5 | 1650 | 00:00:51 | 60.94% | 1.1291 | 0.0010 |
| 5 | 1700 | 00:00:53 | 59.38% | 1.1653 | 0.0010 |

| 5 | 1750 | 00:00:54 | 60.16% | 1.1021 | 0.0010 |

| 5 | 1800 | 00:00:56 | 59.38% | 1.0651 | 0.0010 |
| 5 | 1850 | 00:00:57 | 61.72% | 1.1191 | 0.0010 |

| 5 | 1900 | 00:00:58 | 61.72% | 1.1744 | 0.0010 |

| 5 | 1950 | 00:01:00 | 50.78% | 1.1229 | 0.0010 |
| 6 | 2000 | 00:01:01 | 57.03% | 1.2667 | 0.0010 |

| 6 | 2050 | 00:01:03 | 70.31% | 0.9323 | 0.0010 |

| 6 | 2100 | 00:01:04 | 67.97% | 0.9897 | 0.0010 |
| 6 | 2150 | 00:01:06 | 63.28% | 1.0445 | 0.0010 |

| 6 | 2200 | 00:01:07 | 62.50% | 1.0425 | 0.0010 |

| 6 | 2250 | 00:01:09 | 67.97% | 0.8547 | 0.0010 |
| 6 | 2300 | 00:01:10 | 68.75% | 0.9220 | 0.0010 |

| 7 | 2350 | 00:01:12 | 60.16% | 1.1943 | 0.0010 |

| 7 | 2400 | 00:01:13 | 71.09% | 0.8562 | 0.0010 |

| 7 | 2450 | 00:01:15 | 70.31% | 1.0289 | 0.0010 |

| 7 | 2500 | 00:01:16 | 62.50% | 1.0202 | 0.0010 |

| 7 | 2550 | 00:01:18 | 71.88% | 0.8999 | 0.0010 |
| 7 | 2600 | 00:01:19 | 77.34% | 0.8057 | 0.0010 |

| 7 | 2650 | 00:01:21 | 66.41% | 0.9234 | 0.0010 |
| 7 | 2700 | 00:01:22 | 75.78% | 0.7688 | 0.0010 |

| 8 | 2750 | 00:01:24 | 64.84% | 0.9759 | 0.0010 |

| 8 | 2800 | 00:01:25 | 83.59% | 0.5923 | 0.0010 |
| 8 | 2850 | 00:01:27 | 67.97% | 0.9287 | 0.0010 |

| 8 | 2900 | 00:01:28 | 71.88% | 0.8105 | 0.0010 |

| 8 | 2950 | 00:01:30 | 71.88% | 0.8452 | 0.0010 |
| 8 | 3000 | 00:01:31 | 75.00% | 0.7664 | 0.0010 |

| 8 | 3050 | 00:01:33 | 77.34% | 0.6321 | 0.0010 |

| 8 | 3100 | 00:01:34 | 67.19% | 0.9249 | 0.0010 |
| 9 | 3150 | 00:01:36 | 74.22% | 0.7488 | 0.0001 |

| 9 | 3200 | 00:01:37 | 80.47% | 0.5893 | 0.0001 |

| 9 | 3250 | 00:01:39 | 68.75% | 0.7115 | 0.0001 |
| 9 | 3300 | 00:01:40 | 75.00% | 0.7304 | 0.0001 |

| 9 | 3350 | 00:01:42 | 76.56% | 0.6372 | 0.0001 |

| 9 | 3400 | 00:01:43 | 81.25% | 0.5885 | 0.0001 |
| 9 | 3450 | 00:01:45 | 73.44% | 0.6585 | 0.0001 |

| 9 | 3500 | 00:01:46 | 84.38% | 0.5451 | 0.0001 |

| 10 | 3550 | 00:01:48 | 81.25% | 0.6507 | 0.0001 |
| 10 | 3600 | 00:01:49 | 78.13% | 0.6368 | 0.0001 |

| 10 | 3650 | 00:01:51 | 75.78% | 0.6628 | 0.0001 |

| 10 | 3700 | 00:01:53 | 78.91% | 0.6306 | 0.0001 |
| 10 | 3750 | 00:01:54 | 75.78% | 0.6214 | 0.0001 |

| 10 | 3800 | 00:01:56 | 78.91% | 0.6741 | 0.0001 |

| 10 | 3850 | 00:01:57 | 75.78% | 0.7132 | 0.0001 |
| 10 | 3900 | 00:01:59 | 80.47% | 0.6711 | 0.0001 |

| 11 | 3950 | 00:02:00 | 73.44% | 0.8565 | 0.0001 |

| 11 | 4000 | 00:02:02 | 83.59% | 0.4927 | 0.0001 |
| 11 | 4050 | 00:02:03 | 73.44% | 0.6199 | 0.0001 |

| 11 | 4100 | 00:02:04 | 76.56% | 0.6750 | 0.0001 |

| 11 | 4150 | 00:02:06 | 78.91% | 0.6084 | 0.0001 |
| 11 | 4200 | 00:02:07 | 78.91% | 0.5906 | 0.0001 |

| 11 | 4250 | 00:02:09 | 82.81% | 0.5610 | 0.0001 |

| 12 | 4300 | 00:02:10 | 75.78% | 0.7129 | 0.0001 |

| 12 | 4350 | 00:02:12 | 77.34% | 0.5900 | 0.0001 |

| 12 | 4400 | 00:02:13 | 75.78% | 0.7758 | 0.0001 |

| 12 | 4450 | 00:02:15 | 75.00% | 0.6870 | 0.0001 |
| 12 | 4500 | 00:02:16 | 81.25% | 0.6836 | 0.0001 |

| 12 | 4550 | 00:02:18 | 86.72% | 0.4857 | 0.0001 |

| 12 | 4600 | 00:02:19 | 78.13% | 0.5626 | 0.0001 |
| 12 | 4650 | 00:02:21 | 82.81% | 0.4913 | 0.0001 |

| 13 | 4700 | 00:02:22 | 81.25% | 0.6113 | 0.0001 |

| 13 | 4750 | 00:02:24 | 89.06% | 0.3677 | 0.0001 |
| 13 | 4800 | 00:02:25 | 74.22% | 0.7198 | 0.0001 |

| 13 | 4850 | 00:02:26 | 82.03% | 0.5783 | 0.0001 |

| 13 | 4900 | 00:02:28 | 80.47% | 0.6336 | 0.0001 |

| 13 | 4950 | 00:02:29 | 83.59% | 0.4866 | 0.0001 |
| 13 | 5000 | 00:02:31 | 85.16% | 0.4948 | 0.0001 |

| 13 | 5050 | 00:02:32 | 71.09% | 0.7271 | 0.0001 |

| 14 | 5100 | 00:02:34 | 79.69% | 0.6298 | 0.0001 |
| 14 | 5150 | 00:02:35 | 84.38% | 0.5108 | 0.0001 |

| 14 | 5200 | 00:02:37 | 76.56% | 0.5905 | 0.0001 |

| 14 | 5250 | 00:02:38 | 76.56% | 0.6581 | 0.0001 |
| 14 | 5300 | 00:02:40 | 79.69% | 0.5905 | 0.0001 |

| 14 | 5350 | 00:02:41 | 82.03% | 0.5361 | 0.0001 |

| 14 | 5400 | 00:02:43 | 76.56% | 0.6037 | 0.0001 |
| 14 | 5450 | 00:02:44 | 84.38% | 0.5137 | 0.0001 |

| 15 | 5500 | 00:02:45 | 82.03% | 0.5779 | 0.0001 |

| 15 | 5550 | 00:02:47 | 81.25% | 0.6002 | 0.0001 |
| 15 | 5600 | 00:02:48 | 77.34% | 0.5835 | 0.0001 |

| 15 | 5650 | 00:02:50 | 81.25% | 0.5847 | 0.0001 |

| 15 | 5700 | 00:02:51 | 78.91% | 0.5531 | 0.0001 |
| 15 | 5750 | 00:02:53 | 78.13% | 0.6294 | 0.0001 |

| 15 | 5800 | 00:02:54 | 75.00% | 0.6485 | 0.0001 |

| 15 | 5850 | 00:02:56 | 79.69% | 0.6300 | 0.0001 |
| 16 | 5900 | 00:02:57 | 75.78% | 0.7963 | 0.0001 |

| 16 | 5950 | 00:02:59 | 87.50% | 0.4221 | 0.0001 |

| 16 | 6000 | 00:03:00 | 77.34% | 0.5736 | 0.0001 |

| 16 | 6050 | 00:03:02 | 78.91% | 0.5789 | 0.0001 |

| 16 | 6100 | 00:03:03 | 78.13% | 0.5579 | 0.0001 |

| 16 | 6150 | 00:03:05 | 80.47% | 0.5509 | 0.0001 |
| 16 | 6200 | 00:03:06 | 82.03% | 0.5233 | 0.0001 |

| 17 | 6250 | 00:03:08 | 78.13% | 0.6621 | 1.0000e-05 |
| 17 | 6300 | 00:03:09 | 80.47% | 0.5373 | 1.0000e-05 |

| 17 | 6350 | 00:03:10 | 76.56% | 0.7321 | 1.0000e-05 |

| 17 | 6400 | 00:03:12 | 78.13% | 0.6068 | 1.0000e-05 |
| 17 | 6450 | 00:03:13 | 83.59% | 0.5761 | 1.0000e-05 |

| 17 | 6500 | 00:03:15 | 88.28% | 0.3826 | 1.0000e-05 |

| 17 | 6550 | 00:03:16 | 82.03% | 0.5050 | 1.0000e-05 |
| 17 | 6600 | 00:03:18 | 84.38% | 0.4362 | 1.0000e-05 |

| 18 | 6650 | 00:03:19 | 80.47% | 0.5558 | 1.0000e-05 |

| 18 | 6700 | 00:03:21 | 91.41% | 0.3021 | 1.0000e-05 |
| 18 | 6750 | 00:03:22 | 75.00% | 0.6814 | 1.0000e-05 |

| 18 | 6800 | 00:03:24 | 83.59% | 0.5040 | 1.0000e-05 |

| 18 | 6850 | 00:03:25 | 83.59% | 0.5854 | 1.0000e-05 |
| 18 | 6900 | 00:03:27 | 85.16% | 0.4479 | 1.0000e-05 |

| 18 | 6950 | 00:03:28 | 85.94% | 0.4497 | 1.0000e-05 |

| 18 | 7000 | 00:03:30 | 71.88% | 0.6606 | 1.0000e-05 |
| 19 | 7050 | 00:03:31 | 78.91% | 0.5740 | 1.0000e-05 |

| 19 | 7100 | 00:03:33 | 85.94% | 0.4923 | 1.0000e-05 |

| 19 | 7150 | 00:03:34 | 78.91% | 0.5373 | 1.0000e-05 |
| 19 | 7200 | 00:03:36 | 76.56% | 0.5872 | 1.0000e-05 |

| 19 | 7250 | 00:03:37 | 80.47% | 0.5468 | 1.0000e-05 |

| 19 | 7300 | 00:03:38 | 83.59% | 0.5032 | 1.0000e-05 |
| 19 | 7350 | 00:03:40 | 81.25% | 0.5607 | 1.0000e-05 |

| 19 | 7400 | 00:03:41 | 84.38% | 0.4532 | 1.0000e-05 |

| 20 | 7450 | 00:03:43 | 84.38% | 0.5192 | 1.0000e-05 |
| 20 | 7500 | 00:03:44 | 81.25% | 0.5741 | 1.0000e-05 |

| 20 | 7550 | 00:03:46 | 78.13% | 0.5378 | 1.0000e-05 |

| 20 | 7600 | 00:03:47 | 82.03% | 0.5756 | 1.0000e-05 |
| 20 | 7650 | 00:03:49 | 81.25% | 0.5192 | 1.0000e-05 |

| 20 | 7700 | 00:03:50 | 80.47% | 0.5749 | 1.0000e-05 |

| 20 | 7750 | 00:03:52 | 80.47% | 0.5883 | 1.0000e-05 |
| 20 | 7800 | 00:03:53 | 79.69% | 0.5826 | 1.0000e-05 |

| 21 | 7850 | 00:03:55 | 75.78% | 0.7591 | 1.0000e-05 |

| 21 | 7900 | 00:03:56 | 88.28% | 0.4177 | 1.0000e-05 |

| 21 | 7950 | 00:03:58 | 78.91% | 0.5339 | 1.0000e-05 |

| 21 | 8000 | 00:03:59 | 83.59% | 0.5292 | 1.0000e-05 |

| 21 | 8050 | 00:04:01 | 80.47% | 0.5144 | 1.0000e-05 |
| 21 | 8100 | 00:04:02 | 78.13% | 0.5556 | 1.0000e-05 |

| 21 | 8150 | 00:04:04 | 84.38% | 0.4762 | 1.0000e-05 |

| 22 | 8200 | 00:04:05 | 78.91% | 0.6339 | 1.0000e-05 |
| 22 | 8250 | 00:04:07 | 80.47% | 0.5144 | 1.0000e-05 |

| 22 | 8300 | 00:04:08 | 78.91% | 0.7137 | 1.0000e-05 |

| 22 | 8350 | 00:04:10 | 82.03% | 0.5898 | 1.0000e-05 |
| 22 | 8400 | 00:04:11 | 83.59% | 0.5614 | 1.0000e-05 |

| 22 | 8450 | 00:04:13 | 89.06% | 0.3778 | 1.0000e-05 |

| 22 | 8500 | 00:04:14 | 80.47% | 0.5019 | 1.0000e-05 |

| 22 | 8550 | 00:04:15 | 85.16% | 0.4360 | 1.0000e-05 |
| 23 | 8600 | 00:04:17 | 80.47% | 0.5453 | 1.0000e-05 |

| 23 | 8650 | 00:04:18 | 92.19% | 0.2949 | 1.0000e-05 |

| 23 | 8700 | 00:04:20 | 75.00% | 0.6696 | 1.0000e-05 |
| 23 | 8750 | 00:04:21 | 83.59% | 0.4957 | 1.0000e-05 |

| 23 | 8800 | 00:04:23 | 82.81% | 0.5824 | 1.0000e-05 |

| 23 | 8850 | 00:04:24 | 85.94% | 0.4442 | 1.0000e-05 |
| 23 | 8900 | 00:04:26 | 85.94% | 0.4475 | 1.0000e-05 |

| 23 | 8950 | 00:04:27 | 71.88% | 0.6592 | 1.0000e-05 |

| 24 | 9000 | 00:04:29 | 78.91% | 0.5647 | 1.0000e-05 |
| 24 | 9050 | 00:04:30 | 85.94% | 0.4874 | 1.0000e-05 |

| 24 | 9100 | 00:04:32 | 78.91% | 0.5283 | 1.0000e-05 |

| 24 | 9150 | 00:04:33 | 76.56% | 0.5814 | 1.0000e-05 |
| 24 | 9200 | 00:04:35 | 80.47% | 0.5431 | 1.0000e-05 |

| 24 | 9250 | 00:04:36 | 83.59% | 0.4995 | 1.0000e-05 |

| 24 | 9300 | 00:04:38 | 81.25% | 0.5547 | 1.0000e-05 |
| 24 | 9350 | 00:04:39 | 84.38% | 0.4494 | 1.0000e-05 |

| 25 | 9400 | 00:04:41 | 84.38% | 0.5134 | 1.0000e-06 |

| 25 | 9450 | 00:04:42 | 81.25% | 0.5691 | 1.0000e-06 |
| 25 | 9500 | 00:04:44 | 78.13% | 0.5271 | 1.0000e-06 |

| 25 | 9550 | 00:04:45 | 83.59% | 0.5633 | 1.0000e-06 |

| 25 | 9600 | 00:04:47 | 80.47% | 0.5096 | 1.0000e-06 |

| 25 | 9650 | 00:04:48 | 80.47% | 0.5718 | 1.0000e-06 |

| 25 | 9700 | 00:04:50 | 80.47% | 0.5791 | 1.0000e-06 |

| 25 | 9750 | 00:04:51 | 81.25% | 0.5726 | 1.0000e-06 |
| 26 | 9800 | 00:04:53 | 77.34% | 0.7576 | 1.0000e-06 |

| 26 | 9850 | 00:04:54 | 89.06% | 0.4142 | 1.0000e-06 |
| 26 | 9900 | 00:04:56 | 79.69% | 0.5295 | 1.0000e-06 |

| 26 | 9950 | 00:04:57 | 83.59% | 0.5222 | 1.0000e-06 |

| 26 | 10000 | 00:04:59 | 81.25% | 0.5102 | 1.0000e-06 |
| 26 | 10050 | 00:05:00 | 78.91% | 0.5430 | 1.0000e-06 |

| 26 | 10100 | 00:05:02 | 85.16% | 0.4682 | 1.0000e-06 |

| 27 | 10150 | 00:05:03 | 77.34% | 0.6180 | 1.0000e-06 |
| 27 | 10200 | 00:05:05 | 81.25% | 0.5100 | 1.0000e-06 |

| 27 | 10250 | 00:05:06 | 77.34% | 0.7139 | 1.0000e-06 |

| 27 | 10300 | 00:05:08 | 82.03% | 0.5853 | 1.0000e-06 |
| 27 | 10350 | 00:05:09 | 84.38% | 0.5573 | 1.0000e-06 |

| 27 | 10400 | 00:05:11 | 89.06% | 0.3756 | 1.0000e-06 |

| 27 | 10450 | 00:05:12 | 82.81% | 0.4961 | 1.0000e-06 |
| 27 | 10500 | 00:05:14 | 85.16% | 0.4346 | 1.0000e-06 |

| 28 | 10550 | 00:05:15 | 82.03% | 0.5388 | 1.0000e-06 |

| 28 | 10600 | 00:05:17 | 92.97% | 0.2907 | 1.0000e-06 |
| 28 | 10650 | 00:05:18 | 74.22% | 0.6657 | 1.0000e-06 |

| 28 | 10700 | 00:05:20 | 83.59% | 0.4941 | 1.0000e-06 |

| 28 | 10750 | 00:05:21 | 84.38% | 0.5785 | 1.0000e-06 |
| 28 | 10800 | 00:05:22 | 86.72% | 0.4381 | 1.0000e-06 |

| 28 | 10850 | 00:05:24 | 85.94% | 0.4438 | 1.0000e-06 |

| 28 | 10900 | 00:05:25 | 72.66% | 0.6476 | 1.0000e-06 |
| 29 | 10950 | 00:05:27 | 78.91% | 0.5614 | 1.0000e-06 |

| 29 | 11000 | 00:05:28 | 85.16% | 0.4844 | 1.0000e-06 |

| 29 | 11050 | 00:05:30 | 80.47% | 0.5226 | 1.0000e-06 |
| 29 | 11100 | 00:05:31 | 77.34% | 0.5768 | 1.0000e-06 |

| 29 | 11150 | 00:05:33 | 80.47% | 0.5436 | 1.0000e-06 |

| 29 | 11200 | 00:05:34 | 82.03% | 0.4963 | 1.0000e-06 |
| 29 | 11250 | 00:05:36 | 79.69% | 0.5539 | 1.0000e-06 |

| 29 | 11300 | 00:05:37 | 84.38% | 0.4494 | 1.0000e-06 |

| 30 | 11350 | 00:05:39 | 84.38% | 0.5085 | 1.0000e-06 |
| 30 | 11400 | 00:05:40 | 82.03% | 0.5648 | 1.0000e-06 |

| 30 | 11450 | 00:05:42 | 78.13% | 0.5283 | 1.0000e-06 |

| 30 | 11500 | 00:05:43 | 82.81% | 0.5641 | 1.0000e-06 |

| 30 | 11550 | 00:05:45 | 81.25% | 0.5083 | 1.0000e-06 |

| 30 | 11600 | 00:05:46 | 81.25% | 0.5694 | 1.0000e-06 |

| 30 | 11650 | 00:05:48 | 81.25% | 0.5769 | 1.0000e-06 |
| 30 | 11700 | 00:05:49 | 81.25% | 0.5725 | 1.0000e-06 |

| 31 | 11750 | 00:05:51 | 77.34% | 0.7578 | 1.0000e-06 |

| 31 | 11800 | 00:05:52 | 89.84% | 0.4127 | 1.0000e-06 |
| 31 | 11850 | 00:05:54 | 79.69% | 0.5286 | 1.0000e-06 |

| 31 | 11900 | 00:05:55 | 83.59% | 0.5210 | 1.0000e-06 |

| 31 | 11950 | 00:05:57 | 82.03% | 0.5091 | 1.0000e-06 |
| 31 | 12000 | 00:05:58 | 78.91% | 0.5426 | 1.0000e-06 |

| 31 | 12050 | 00:06:00 | 84.38% | 0.4682 | 1.0000e-06 |

| 32 | 12100 | 00:06:01 | 77.34% | 0.6172 | 1.0000e-06 |

| 32 | 12150 | 00:06:03 | 81.25% | 0.5092 | 1.0000e-06 |
| 32 | 12200 | 00:06:04 | 77.34% | 0.7123 | 1.0000e-06 |

| 32 | 12250 | 00:06:06 | 82.03% | 0.5843 | 1.0000e-06 |

| 32 | 12300 | 00:06:07 | 84.38% | 0.5559 | 1.0000e-06 |
| 32 | 12350 | 00:06:09 | 89.06% | 0.3759 | 1.0000e-06 |

| 32 | 12400 | 00:06:10 | 82.81% | 0.4961 | 1.0000e-06 |

| 32 | 12450 | 00:06:12 | 85.16% | 0.4344 | 1.0000e-06 |
| 33 | 12500 | 00:06:13 | 82.03% | 0.5381 | 1.0000e-07 |

| 33 | 12550 | 00:06:15 | 92.97% | 0.2906 | 1.0000e-07 |

| 33 | 12600 | 00:06:16 | 74.22% | 0.6650 | 1.0000e-07 |
| 33 | 12650 | 00:06:18 | 83.59% | 0.4940 | 1.0000e-07 |

| 33 | 12700 | 00:06:19 | 84.38% | 0.5774 | 1.0000e-07 |

| 33 | 12750 | 00:06:21 | 87.50% | 0.4368 | 1.0000e-07 |
| 33 | 12800 | 00:06:22 | 86.72% | 0.4435 | 1.0000e-07 |

| 33 | 12850 | 00:06:24 | 72.66% | 0.6474 | 1.0000e-07 |

| 34 | 12900 | 00:06:25 | 78.91% | 0.5609 | 1.0000e-07 |
| 34 | 12950 | 00:06:27 | 85.16% | 0.4836 | 1.0000e-07 |

| 34 | 13000 | 00:06:28 | 81.25% | 0.5232 | 1.0000e-07 |

| 34 | 13050 | 00:06:30 | 77.34% | 0.5763 | 1.0000e-07 |
| 34 | 13100 | 00:06:31 | 80.47% | 0.5428 | 1.0000e-07 |

| 34 | 13150 | 00:06:33 | 82.03% | 0.4954 | 1.0000e-07 |

| 34 | 13200 | 00:06:34 | 79.69% | 0.5539 | 1.0000e-07 |

| 34 | 13250 | 00:06:36 | 84.38% | 0.4481 | 1.0000e-07 |

| 35 | 13300 | 00:06:37 | 84.38% | 0.5081 | 1.0000e-07 |

| 35 | 13350 | 00:06:39 | 82.03% | 0.5646 | 1.0000e-07 |
| 35 | 13400 | 00:06:40 | 78.91% | 0.5280 | 1.0000e-07 |

| 35 | 13450 | 00:06:42 | 82.81% | 0.5625 | 1.0000e-07 |
| 35 | 13500 | 00:06:43 | 81.25% | 0.5078 | 1.0000e-07 |

| 35 | 13550 | 00:06:45 | 81.25% | 0.5692 | 1.0000e-07 |

| 35 | 13600 | 00:06:46 | 81.25% | 0.5761 | 1.0000e-07 |
| 35 | 13650 | 00:06:48 | 81.25% | 0.5721 | 1.0000e-07 |

| 36 | 13700 | 00:06:49 | 77.34% | 0.7580 | 1.0000e-07 |

| 36 | 13750 | 00:06:51 | 89.84% | 0.4122 | 1.0000e-07 |
| 36 | 13800 | 00:06:52 | 79.69% | 0.5289 | 1.0000e-07 |

| 36 | 13850 | 00:06:54 | 83.59% | 0.5209 | 1.0000e-07 |

| 36 | 13900 | 00:06:55 | 81.25% | 0.5086 | 1.0000e-07 |
| 36 | 13950 | 00:06:57 | 78.91% | 0.5426 | 1.0000e-07 |

| 36 | 14000 | 00:06:58 | 85.16% | 0.4671 | 1.0000e-07 |

| 37 | 14050 | 00:07:00 | 77.34% | 0.6167 | 1.0000e-07 |
| 37 | 14100 | 00:07:01 | 81.25% | 0.5093 | 1.0000e-07 |

| 37 | 14150 | 00:07:03 | 77.34% | 0.7123 | 1.0000e-07 |

| 37 | 14200 | 00:07:04 | 81.25% | 0.5856 | 1.0000e-07 |
| 37 | 14250 | 00:07:06 | 84.38% | 0.5560 | 1.0000e-07 |

| 37 | 14300 | 00:07:07 | 89.06% | 0.3759 | 1.0000e-07 |

| 37 | 14350 | 00:07:09 | 82.81% | 0.4957 | 1.0000e-07 |
| 37 | 14400 | 00:07:10 | 85.16% | 0.4340 | 1.0000e-07 |

| 38 | 14450 | 00:07:12 | 82.03% | 0.5384 | 1.0000e-07 |

| 38 | 14500 | 00:07:13 | 92.97% | 0.2904 | 1.0000e-07 |
| 38 | 14550 | 00:07:15 | 74.22% | 0.6649 | 1.0000e-07 |

| 38 | 14600 | 00:07:16 | 83.59% | 0.4935 | 1.0000e-07 |

| 38 | 14650 | 00:07:18 | 84.38% | 0.5776 | 1.0000e-07 |
| 38 | 14700 | 00:07:19 | 87.50% | 0.4371 | 1.0000e-07 |

| 38 | 14750 | 00:07:21 | 86.72% | 0.4435 | 1.0000e-07 |

| 38 | 14800 | 00:07:22 | 72.66% | 0.6471 | 1.0000e-07 |
| 39 | 14850 | 00:07:24 | 78.91% | 0.5606 | 1.0000e-07 |

| 39 | 14900 | 00:07:25 | 85.16% | 0.4836 | 1.0000e-07 |

| 39 | 14950 | 00:07:27 | 81.25% | 0.5230 | 1.0000e-07 |
| 39 | 15000 | 00:07:28 | 77.34% | 0.5762 | 1.0000e-07 |

| 39 | 15050 | 00:07:30 | 80.47% | 0.5429 | 1.0000e-07 |

| 39 | 15100 | 00:07:31 | 82.03% | 0.4955 | 1.0000e-07 |

| 39 | 15150 | 00:07:33 | 79.69% | 0.5538 | 1.0000e-07 |

| 39 | 15200 | 00:07:34 | 84.38% | 0.4483 | 1.0000e-07 |

| 40 | 15250 | 00:07:35 | 84.38% | 0.5079 | 1.0000e-07 |
| 40 | 15300 | 00:07:37 | 82.03% | 0.5644 | 1.0000e-07 |

| 40 | 15350 | 00:07:38 | 78.91% | 0.5280 | 1.0000e-07 |

| 40 | 15400 | 00:07:40 | 82.81% | 0.5626 | 1.0000e-07 |
| 40 | 15450 | 00:07:41 | 81.25% | 0.5077 | 1.0000e-07 |

| 40 | 15500 | 00:07:43 | 81.25% | 0.5691 | 1.0000e-07 |

| 40 | 15550 | 00:07:44 | 81.25% | 0.5761 | 1.0000e-07 |
| 40 | 15600 | 00:07:46 | 81.25% | 0.5721 | 1.0000e-07 |

|===

=================================|

%for video training
%trainingData = objectDetectorTrainingData(TruthTable);

% Validate Training - Learned Edges

w = cifar10Net.Layers(2).Weights;
w = rescale(w);

figure

montage(w)
% Validate Training - Test Set

YTest = classify(cifar10Net, testImages);

accuracy = sum(YTest == testLabels)/numel(testLabels)

accuracy =

 0.7419

{Error using
driving.internal.videoLabeler.tool.VideoLabelingTool.validateAndProcessLoa

dedSessionWithImageSequence

Undefined variable "this" or class "this.getGroupName".
}

[Warning: Error occurred while evaluating listener callback.]

gTruth =

 <a href="matlab:helpPopup groundTruth" style="font-
weight:bold">groundTruth with properties:

 DataSource: [1×1 groundTruthDataSource]

 LabelDefinitions: [2×3 table]

 LabelData: [508×2 timetable]

TruthTable = objectDetectorTrainingData(gTruth);

Write images extracted for training to folder:

 C:\Users\RA_Desktop\OneDrive\Fall 2018\Final Project\V3_Final_Project

Writing 74 images extracted from TestVideo.mp4...Completed.

summary(TruthTable)

Description: This was created using the Ground Truth Labeler app on 25-

Nov-2018.

Variables:

 imageFilename: 74×1 cell array of character vectors

 PL: 74×1 cell

 PR: 74×1 cell

%Train Fast R-CNN for New Sign Detection
%Changes categories from 10 to 3 -> PL,PR,Background

doTraining = true;

if doTraining
 % training options

 options = trainingOptions('sgdm', ...

 'MiniBatchSize', 4, ...
 'InitialLearnRate', 1e-3, ...

 'LearnRateSchedule', 'piecewise', ...

 'LearnRateDropFactor', 0.1, ...

 'LearnRateDropPeriod', 100, ...

 'MaxEpochs', 10, ...

 'VerboseFrequency', 200);
 % Train an R-CNN object detector. This will take several minutes.

 rcnn = trainFasterRCNNObjectDetector(TruthTable3, cifar10Net, options,

...
 'NegativeOverlapRange', [0 .3], 'PositiveOverlapRange',[.6 1])

else

 % pre-trained network for the example.
 load('rcnnStopSigns.mat','rcnn')

end

{Undefined function or variable 'TruthTable3'.

}
%Train Fast R-CNN for New Sign Detection

%Changes categories from 10 to 3 -> PL,PR,Background

doTraining = true;
if doTraining

 % training options

 options = trainingOptions('sgdm', ...
 'MiniBatchSize', 4, ...

 'InitialLearnRate', 1e-3, ...

 'LearnRateSchedule', 'piecewise', ...
 'LearnRateDropFactor', 0.1, ...

 'LearnRateDropPeriod', 100, ...

 'MaxEpochs', 10, ...
 'VerboseFrequency', 200);

 % Train an R-CNN object detector. This will take several minutes.

 rcnn = trainFasterRCNNObjectDetector(TruthTable, cifar10Net, options, ...
 'NegativeOverlapRange', [0 .3], 'PositiveOverlapRange',[.6 1])

else

 % pre-trained network for the example.
 load('rcnnStopSigns.mat','rcnn')

end

**

Training a Faster R-CNN Object Detector for the following object classes:

* PL

* PR

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.
|===

=================================|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base
Learning |

| | | (hh:mm:ss) | Accuracy | RMSE | Rate |

|===
=================================|

| 1 | 1 | 00:00:00 | 50.00% | 0.89 | 0.0010 |

| 3 | 200 | 00:01:22 | 100.00% | 1.54 | 0.0010 |
| 6 | 400 | 00:02:45 | 100.00% | 1.13 | 0.0010 |

| 9 | 600 | 00:04:07 | 100.00% | 1.01 | 0.0010 |

| 10 | 740 | 00:05:05 | 75.00% | 1.10 | 0.0010 |
|===

=================================|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

**

Training a Fast R-CNN Object Detector for the following object classes:

* PL
* PR

--> Extracting region proposals from 74 training images...done.

Training on single GPU.

|===
=================================|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Accuracy | RMSE | Rate |

|===

=================================|
| 1 | 1 | 00:00:00 | 0.00% | 0.80 | 0.0010 |

| 3 | 200 | 00:00:58 | 75.00% | 0.62 | 0.0010 |

| 6 | 400 | 00:01:57 | 75.00% | 0.58 | 0.0010 |
| 9 | 600 | 00:02:55 | 100.00% | 0.71 | 0.0010 |

| 10 | 720 | 00:03:30 | 75.00% | 0.43 | 0.0010 |

|===
=================================|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

Training on single GPU.

|===
=================================|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base

Learning |
| | | (hh:mm:ss) | Accuracy | RMSE | Rate |

|===

=================================|
| 1 | 1 | 00:00:00 | 75.00% | 0.91 | 0.0010 |

| 3 | 200 | 00:01:00 | 100.00% | 0.85 | 0.0010 |

| 6 | 400 | 00:02:00 | 50.00% | 1.37 | 0.0010 |
| 9 | 600 | 00:03:01 | 75.00% | 0.79 | 0.0010 |

| 10 | 740 | 00:03:43 | 75.00% | 1.51 | 0.0010 |

|===
=================================|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.
**

Training a Fast R-CNN Object Detector for the following object classes:

* PL

* PR

--> Extracting region proposals from 74 training images...done.

Training on single GPU.

|===
=================================|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base

Learning |
| | | (hh:mm:ss) | Accuracy | RMSE | Rate |

|===

=================================|
| 1 | 1 | 00:00:00 | 75.00% | 0.85 | 0.0010 |

| 4 | 200 | 00:00:38 | 100.00% | 0.47 | 0.0010 |

| 7 | 400 | 00:01:17 | 75.00% | 0.69 | 0.0010 |
| 10 | 600 | 00:01:55 | 100.00% | 0.61 | 0.0010 |

| 10 | 630 | 00:02:01 | 100.00% | 1.00 | 0.0010 |

|===
=================================|

Finished training Faster R-CNN object detector.

rcnn =

 <a href="matlab:helpPopup fasterRCNNObjectDetector" style="font-

weight:bold">fasterRCNNObjectDetector with properties:

 ModelName: 'PL'

 Network: [1×1 vision.cnn.FastRCNN]
 RegionProposalNetwork: [1×1 vision.cnn.RegionProposalNetwork]

 MinBoxSizes: [37 17]

 BoxPyramidScale: 2
 NumBoxPyramidLevels: 6

 ClassNames: {'PL' 'PR' 'Background'}

 MinObjectSize: [5 5]

IdleTimeout has been reached.

Parallel pool using the 'local' profile is shutting down.
IdleTimeout has been reached.

Parallel pool using the 'local' profile is shutting down.

% Setup Video Reader and Display
videoFReader = vision.VideoFileReader('TestVideo480.mp4',...

 'ImageColorSpace','RGB');

videoFrame = videoFReader(); %Get first frame of video file
%Use H.265 10-bit(x265) codec in Handbrake

%Test on video play back frame.

%If codec is good, image will have color and not distorted.

imshow(videoFrame)
videoPlayer = vision.DeployableVideoPlayer;

% Setup Video Writer

videoFWriter = vision.VideoFileWriter('FinalProject4.avi','FrameRate',...
 videoFReader.info.VideoFrameRate);

videoFWriter.VideoCompressor='DV Video Encoder';

% Test Fast RCNN on video file
while ~isDone(videoFReader)

 image = step(videoFReader);

 im = im2uint8(image);
 [bboxes,score,label] = detect(rcnn,im,...

 'SelectStrongest',true,...

 %'RatioType','Min'...
 %'RatioType','Min'...

{Error: Invalid expression. When calling a function or indexing a variable,
use parentheses. Otherwise, check for mismatched delimiters.

}

while ~isDone(videoFReader)
 image = step(videoFReader);

 im = im2uint8(image);

 [bboxes,score,label] = detect(rcnn,im,...

 'SelectStrongest',true,...

 'NumStrongestRegions',1000);

 %[bboxes,score] = detect(rcnn,im);
 if isempty(score) == 1

 label = 'NULL';
 score = 0;

 bboxes = [35 35 100 100];

 end
 ann = [];

 boxColor = [];

 for i = 1:length(score)
 ann{i} = sprintf('%s: %f', label(i), score(i));

 if label(i) == "PL"

 boxColor = [boxColor;([255 0 0])];
 else

 boxColor = [boxColor;([255 255 0])];

 end
 end

 outputImage = insertObjectAnnotation(image, 'rectangle', ...

 bboxes, ann...
 'LineWidth',5,...

 'LineWidth',5,...

{Error: Invalid expression. Check for missing multiplication operator, missing

or unbalanced delimiters, or other syntax error. To construct matrices, use

brackets instead of parentheses.
}

while ~isDone(videoFReader)

 image = step(videoFReader);
 im = im2uint8(image);

 [bboxes,score,label] = detect(rcnn,im,...

 'SelectStrongest',true,...
 'NumStrongestRegions',1000);

 %[bboxes,score] = detect(rcnn,im);

 if isempty(score) == 1
 label = 'NULL';

 score = 0;

 bboxes = [35 35 100 100];

 end

 ann = [];

 boxColor = [];
 for i = 1:length(score)

 ann{i} = sprintf('%s: %f', label(i), score(i));

 if label(i) == "PL"
 boxColor = [boxColor;([255 0 0])];

 else

 boxColor = [boxColor;([255 255 0])];
 end

 end

 outputImage = insertObjectAnnotation(image, 'rectangle', ...

 bboxes, ann...
 'LineWidth',5,...

 'LineWidth',5,...

{Error: Invalid expression. Check for missing multiplication operator, missing

or unbalanced delimiters, or other syntax error. To construct matrices, use

brackets instead of parentheses.
}

release(videoFReader);

release(videoPlayer);
% Test Fast RCNN on video file

while ~isDone(videoFReader)

 image = step(videoFReader);
 im = im2uint8(image);

 [bboxes,score,label] = detect(rcnn,im,...

 'SelectStrongest',true,...
 'NumStrongestRegions',1000);

 %[bboxes,score] = detect(rcnn,im);

 if isempty(score) == 1
 label = 'NULL';

 score = 0;

 bboxes = [35 35 100 100];

 end

 ann = [];

 boxColor = [];
 for i = 1:length(score)

 ann{i} = sprintf('%s: %f', label(i), score(i));
 if label(i) == "PL"

 boxColor = [boxColor;([255 0 0])];

 else
 boxColor = [boxColor;([255 255 0])];

 end

 end
 outputImage = insertObjectAnnotation(image, 'rectangle',...

 bboxes, ann...

 'LineWidth',5,...
 'LineWidth',5,...

{Error: Invalid expression. Check for missing multiplication operator, missing
or unbalanced delimiters, or other syntax error. To construct matrices, use

brackets instead of parentheses.

}
% Test Fast RCNN on video file

while ~isDone(videoFReader)

 image = step(videoFReader);
 im = im2uint8(image);

 [bboxes,score,label] = detect(rcnn,im,...

 'SelectStrongest',true,...
 'NumStrongestRegions',1000);

 %[bboxes,score] = detect(rcnn,im);

 if isempty(score) == 1
 label = 'NULL';

 score = 0;

 bboxes = [35 35 100 100];
 end

 ann = [];

 boxColor = [];
 for i = 1:length(score)

 ann{i} = sprintf('%s: %f', label(i), score(i));

 if label(i) == "PL"

 boxColor = [boxColor;([255 0 0])];

 else

 boxColor = [boxColor;([255 255 0])];
 end

 end

 outputImage = insertObjectAnnotation(image, 'rectangle',...
 bboxes, ann,'LineWidth',5,...

 'Color',boxColor);

 step(videoPlayer, outputImage);
 step(videoFWriter,outputImage);

end

release(videoFReader)

release(videoPlayer)
release(videoFWriter)

% Test Fast RCNN on video file

while ~isDone(videoFReader)
 image = step(videoFReader);

 im = im2uint8(image);

 [bboxes,score,label] = detect(rcnn,im,...
 'SelectStrongest',true,...

 'NumStrongestRegions',1000);

 %[bboxes,score] = detect(rcnn,im);
 if isempty(score) == 1

 label = 'NULL';

 score = 0;
 bboxes = [35 35 100 100];

 end

 ann = [];
 boxColor = [];

 for i = 1:length(score)

 ann{i} = sprintf('%s: %f', label(i), score(i));
 if label(i) == "PL"

 boxColor = [boxColor;([255 0 0])];

 else

 boxColor = [boxColor;([255 255 0])];

 end

 end
 outputImage = insertObjectAnnotation(image, 'rectangle',...

 bboxes, ann,...
 'Color',boxColor);

 step(videoPlayer, outputImage);

 step(videoFWriter,outputImage);
end

release(videoFReader)

release(videoPlayer)
release(videoFWriter)

%Train Fast R-CNN for New Sign Detection

%Changes categories from 10 to 3 -> PL,PR,Background
doTraining = true;

if doTraining

 % training options
 options = trainingOptions('sgdm', ...

 'MiniBatchSize', 30, ...

 'InitialLearnRate', 1e-3, ...
 'LearnRateSchedule', 'piecewise', ...

 'LearnRateDropFactor', 0.1, ...

 'LearnRateDropPeriod', 100, ...
 'MaxEpochs', 10, ...

 'VerboseFrequency', 200);

 % Train an R-CNN object detector. This will take several minutes.
 rcnn = trainFasterRCNNObjectDetector(TruthTable, cifar10Net, options, ...

 'NegativeOverlapRange', [0 .3], 'PositiveOverlapRange',[.6 1])

else
 % pre-trained network for the example.

 load('rcnnStopSigns.mat','rcnn')

end
Starting parallel pool (parpool) using the 'local' profile ...

connected to 4 workers.

**

Training a Faster R-CNN Object Detector for the following object classes:

* PL

* PR

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===
=================================|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base

Learning |
| | | (hh:mm:ss) | Accuracy | RMSE | Rate |

|===

=================================|

| 1 | 1 | 00:00:00 | 60.00% | 1.08 | 0.0010 |
| 3 | 200 | 00:01:21 | 93.33% | 1.03 | 0.0010 |

| 6 | 400 | 00:02:44 | 83.33% | 0.81 | 0.0010 |

| 9 | 600 | 00:04:06 | 86.67% | 0.82 | 0.0010 |
| 10 | 740 | 00:05:04 | 83.33% | 0.82 | 0.0010 |

|===

=================================|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

**

Training a Fast R-CNN Object Detector for the following object classes:

* PL

* PR

--> Extracting region proposals from 74 training images...done.

Training on single GPU.
|===

=================================|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Accuracy | RMSE | Rate |

|===
=================================|

| 1 | 1 | 00:00:00 | 13.33% | 0.63 | 0.0010 |
| 3 | 200 | 00:00:58 | 86.67% | 0.57 | 0.0010 |

| 6 | 400 | 00:01:56 | 93.33% | 0.65 | 0.0010 |

| 9 | 600 | 00:02:54 | 96.67% | 0.50 | 0.0010 |
| 10 | 730 | 00:03:33 | 100.00% | 0.58 | 0.0010 |

|===

=================================|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.
|===

=================================|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base
Learning |

| | | (hh:mm:ss) | Accuracy | RMSE | Rate |

|===
=================================|

| 1 | 1 | 00:00:00 | 73.33% | 0.77 | 0.0010 |

| 3 | 200 | 00:01:01 | 96.67% | 0.89 | 0.0010 |
| 6 | 400 | 00:02:02 | 96.67% | 0.90 | 0.0010 |

| 9 | 600 | 00:03:04 | 93.33% | 0.99 | 0.0010 |

| 10 | 740 | 00:03:47 | 100.00% | 0.68 | 0.0010 |
|===

=================================|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

**

Training a Fast R-CNN Object Detector for the following object classes:

* PL
* PR

--> Extracting region proposals from 74 training images...done.

Training on single GPU.

|===
=================================|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base

Learning |
| | | (hh:mm:ss) | Accuracy | RMSE | Rate |

|===

=================================|
| 1 | 1 | 00:00:00 | 86.67% | 0.66 | 0.0010 |

| 3 | 200 | 00:00:39 | 96.67% | 0.52 | 0.0010 |

| 6 | 400 | 00:01:18 | 100.00% | 0.41 | 0.0010 |

| 9 | 600 | 00:01:57 | 100.00% | 0.34 | 0.0010 |
| 10 | 740 | 00:02:25 | 96.67% | 0.47 | 0.0010 |

|===

=================================|

Finished training Faster R-CNN object detector.

rcnn =

 <a href="matlab:helpPopup fasterRCNNObjectDetector" style="font-

weight:bold">fasterRCNNObjectDetector with properties:

 ModelName: 'PL'

 Network: [1×1 vision.cnn.FastRCNN]

 RegionProposalNetwork: [1×1 vision.cnn.RegionProposalNetwork]
 MinBoxSizes: [37 17]

 BoxPyramidScale: 2

 NumBoxPyramidLevels: 6
 ClassNames: {'PL' 'PR' 'Background'}

 MinObjectSize: [5 5]

IdleTimeout has been reached.

Parallel pool using the 'local' profile is shutting down.

save rcnn
summary(rcnn)

{Undefined function 'summary' for input arguments of type
'fasterRCNNObjectDetector'.

}

rcnn

rcnn =

 <a href="matlab:helpPopup fasterRCNNObjectDetector" style="font-

weight:bold">fasterRCNNObjectDetector with properties:

 ModelName: 'PL'

 Network: [1×1 vision.cnn.FastRCNN]

 RegionProposalNetwork: [1×1 vision.cnn.RegionProposalNetwork]
 MinBoxSizes: [37 17]

 BoxPyramidScale: 2

 NumBoxPyramidLevels: 6
 ClassNames: {'PL' 'PR' 'Background'}

 MinObjectSize: [5 5]

release(videoFReader)

release(videoPlayer)

release(videoFWriter)
release(videoFReader)

release(videoPlayer)

release(videoFWriter)
release(videoFReader)

release(videoPlayer)

release(videoFWriter)
release(videoFReader)

release(videoPlayer)

release(videoFWriter)

save rcnn

