

Time Series Forecasting with Neural Nets
Rick Alayza, Trincy Thomas Kozhikkadan, Krystofer Newman

Abstract—This project uses a Long Short-Term Memory

(LSTM) recurrent neural network (RNN) for time series

prediction based on a time series data set that has 275 data points

(y(n), n=1, 2, …, 275).

Keywords—Recurrent neural networks, Long Short-Term

Memory Networks, Sigmoid

I. INTRODUCTION

Recurrent Neural Network computations allow for
information to persist during computation through connected
nodes forming a directed graph. Unlike traditional neural
networks, recurrent neural networks or RNNs use their internal
states to process information such as time series data. These
models allow for computations like the given data set of 275
points and also allow for predictions using y(n+T) where T=30.
This report will have an overview of recurrent neural networks,
long short-term memory networks, computation and its results.

II. RNNS & LSTM NETWORKS

Long Short-Term Memory networks (LSTMs) are a variant
of Recurrent Neural Networks that allow for learning of long-
term dependencies. These networks are designed for
remembering information for long periods of time due to the
implemented chain of neural nets. Figure one shows an example
of an LSTM and RNN architecture [1].

Figure 1. Examples of LSTM and RNN architectures

In a typical LSTM model, a chain of modules as pictured to the
left in Figure 1, will be linked together to pass a vector from one
node to the next during computation [2]. These links allow
predictions to be trained on the memory of the past inputs of the
vectors. These LSTM chains of neural nets allow for solving

problems of all types including speech and handwriting
recognition.

III. PYTHON LSTM NEURAL NETWORK

 To setup the neural network correctly, the data was
vectorized. This vectorization is a powerful method to package
the information in a way that the RNN can us it. What makes
this problem unique is the time series aspect. That signifies that
the data set does not have multiple features. This neural network
does not apply to other situations were multiple features are part
of the dataset. I the process of creating the neural network, it is
important to understand the packages used in the code as well as
the actual coding language. The neural network was
implemented and tested with the help of website focused on the
topic of machine learning [3].

A. Python Packages

 Implementing Python was the solution to this problem, along

with other installations. The first and most important Python

installation was Keras. Keras is an API for high level neural

networks [4]. Within Keras, the Sequential function was called

in the code listed in the Appendix. The Sequential function

allows for linear layers to be stacked. These layers are

associated with the layers in a neural network. With a simple

adjustment, the number of neural network layers can be

increased or decreased. For this solution, two layers were

added. The Dense layer was used for the operation

implementation. This full connected neural network has every

input node and output node connected. The LSTM layer has the

recurrent neural network (RNN). This layer will model the

behavior of the training data in a time sequence. This layer is

what separates this RNN from other designs (Figure 1).

The next important Python installation was NumPy. NumPy is

a scientific computing package [5]. This package allows for

creation and manipulation of arrays objects. This array object

can be in the form of a vector, vertical, array, horizontal, and

matrix, multi-dimensional. Mainly in this solution, vectors and

arrays were implemented. For example, the code would not

work if the dataset in the Excel file was only ported into a

variable. The values had to be conditioned and formed before

executing the RNN construction and training. In this solution,

the dataset is imported from the provided spreadsheet,

separated into respective training and testing sets, then

packaged as a dataset (Line 12) using NumPy. Even after

packaging in the create_dataset, NumPy was used again to

reshape each sub-dataset into usable dimensions for the LSTM

with datapoint dimensions of 3x1x1. That was the dimensional

criteria for LSTM. Understanding the capability of this

package and how it played a key role in the representation of

information was vital aspect of this solution.

 The final important package installed in Python was

TensorFlow. TensorFlow is a machine learning framework[6].

TensorFlow works in conjunction with Keras. This program is

mainly tasked with dataflow structures. For example, Keras will

construct the deep learning model while using TensorFlow

functions and symbolic library. Essentially, Keras is a program

wrapper for TensorFlow.

 The remaining packages are important in execution but used

in limited amounts in the code compared to the former

packages. Pandas is a data structure tool [7]. Often used in data

analysis, pandas was only used to interface with the spreadsheet

to extract the data. Sklearn is a Python library for machine

learning. This package is built on top of NumPy[8]. This

package was mainly used to apply a scaler fit on the whole

dataset. The scaler fit functions to bring the values in the dataset

to a range between -1 and 1. This normalization functions to

remove extremes in the dataset that might influence the

machine learning. The final package required to execute the

code was matplotlib. Matplotlib is library that allows for

programs like Python to plot data. This package was only used

at the end of the code to generated a visual representation of the

dataset, training predictions, and test predictions.

B. Code

 Along with understanding important packages used in a

particular, it is vital to understand the individual executions or

functions called. This section will highlight unique sections of

code and offer an explanation relative to the overall objective

or task. The Sequential command in Line 45 starts the process

to construct the neural network. It defines the type of neural

network to be used. As mentioned earlier, this command called

a neural network model specific to time series data. Till this

point in the code, the definition of the RNN has not been made.

The previous lines only import, condition, and shape the given

data to be used train the neural network. Line 46 defines the

number of hidden neurons in the single hidden layer and the

input shape. This code execution had 40 hidden neurons. The

default used in the tutorial was set to a value of 4. In

experimenting with the neural network on this problem, the

number of hidden layers did not have a significant impact on

the output and training accuracy. It is important to note that the

LSTM neurons use the default sigmoid activation formula

(Equation 1). The input shape of 1 has the dimension of 3x1x1.

This value was not modified because this value would prevent

the code from executing if the incorrect value is set. The next

line used the Dense function. For this classical neural network

design had a singular output. Increasing this value increases the

number of output nodes. For a time-series neural network, a

singular output was sufficient. The compiler function (Line 48)

configures the model for training [4]. Within the compile

function, the loss function was defined. For this instance, the

loss function used when compiling was the root mean square

error. This applied the root mean square error calculation

between the predicted value output of the neural network and

the actual value in the dataset to calculate the loss as the neural

network trains. The final line for this section initializes the

training of the model to the number of epochs defined. This

function takes the input values, specifically NumPy values.

Epochs is the number of iterations over the whole dataset. For

example, 2 epochs will train through the entire dataset twice

regardless of the number of iterations performed on each

datapoint.

1

1 + 𝑒𝑥
 1

IV. RESULTS

The dataset was divided into two sub-datasets. One was used
to train the RNN and the other was used to test the neural
network predictions against actual values. The required
prediction of 30 values beyond the original dataset is included
in the test sub-dataset. Figure 2 is the output of the code with a
time-series along the x-axis, or index, and the dataset value for
the y-axis. The blue line represented the dataset. The orange line
represented the values used in the training. The green line
represented the test sub-dataset. The test values overlapping the
blue indicate the values that were used to compare predictions at
the end of the dataset. The remaining green line were the actual
predicted values generated by the neural network. Figure 3 is a
zoomed in image of a portion of the test values and the predicted
values. According to the code output, the root mean square error
for the training was 19.86. By visual inspection, the neural
network did a good job of predicting the values during training.
More so, the overlap in the test group also has a good level of
accurate prediction. Table 1 has the values for the 30 predicted
points.

Figure 2 Code Output

Figure 3 Code Output (Zoomed View)

Table 1: Predicted Values

1 38.85733 16 86.48565

2 38.85708 17 130.45955

3 14.172772 18 119.55465

4 16.766094 19 118.3932

5 40.212147 20 79.59135

6 76.22963 21 67.89791

7 103.32304 22 36.311058

8 99.67182 23 21.250668

9 83.486046 24 13.047722

10 66.592926 25 41.818687

11 49.8065 26 123.44533

12 35.54595 27 156.28847

13 23.315609 28 152.82361

14 17.543253 29 135.6004

15 37.75463 30 101.72965

A. Interesting Observation

 Figure 4 was included because it was an interesting

observation. Figure 4 was a result of removing the scaler fit

transformation (Line 28). Without the fit transformation, the

neural network was not able to accurately predict the peaks of

the dataset.

Figure 4: Code Output without Regularization

V. ANDREW NG – CONNECTIONS

 The connections between this project and educational

video done by Prof. Andrew Ng are few. Andrew Ng does

discuss the theory of gradient descent and cost functions. The

theory of the cost function does hold in this instance. The cost

function in this application was seen through the loss value.

The loss value for each epoch indicates the minimization of

the cost function. On the other hand, the gradient descent does

not have significant influence. Prof. Andrew Ng stressed the

importance of the gradient descent but time-series functions

are unique in this situation. The LSTM neural network is

tuned using backpropagation and overcomes the vanishing

gradient problem [3]. There is a good overlap over the

sidmoid function (Equation 1). This value is important in

application but is only stressed in the Prof. Andrew Ng’s

online course on Coursera. The Coursera online class had

programming labs that allowed the student to implement the

sigmoid activation function relative to the desired neural

network application. It is important to note that the online

Coursera course does not cover time-series neural networks.

The online class, as well as this class, focuses on a more

classical application of neural networks where datasets have

one or more features, general more than one.

VI. REFERENCES

[1] https://www.researchgate.net/figure/An-example-of-a-basic-LSTM-cell-

left-and-a-basic-RNN-cell-right-Figure-follows-a_fig2_306377072

[2] http://colah.github.io/posts/2015-08-Understanding-LSTMs

[3] https://machinelearningmastery.com/time-series-prediction-lstm-
recurrent-neural-networks-python-keras/

[4] https://keras.io/

[5] http://www.numpy.org/

[6] https://www.tensorflow.org/api_docs/python/

[7] https://pandas.pydata.org/

[8] http://scikit-learn.org/stable/

VII. APPENDIX

A. Code

#Project 3 Team 5 : Krys Newman, Trincy Kozhikkadan, Rick

Alayza

import numpy

import matplotlib.pyplot as plt

from pandas import read_csv

import math

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

convert an array of values into a dataset matrix

def create_dataset(dataset, look_back=1):

 dataX, dataY = [], []

 for i in range(len(dataset)-look_back-1):

 a = dataset[i:(i+look_back), 0]

 dataX.append(a)

 dataY.append(dataset[i + look_back, 0])

 return numpy.array(dataX), numpy.array(dataY)

fix random seed for reproducibility

numpy.random.seed(7)

load the dataset

dataframe = read_csv('C:\Python35\Scripts\project2_time

series data_students.csv', usecols=[1], engine='python',

skipfooter=0,header=0)

dataset = dataframe.values

dataset = dataset.astype('float32')

normalize the dataset

scaler = MinMaxScaler(feature_range=(0, 1))

dataset = scaler.fit_transform(dataset)

split into train and test sets

train_size = int(len(dataset) * 0.80)

test_size = len(dataset) - train_size

Predicted values are lumped in with test

train, test = dataset[0:train_size,:],

dataset[train_size:len(dataset),:]

reshape into X=t and Y=t+1

look_back = 1

trainX, trainY = create_dataset(train, look_back)

testX, testY = create_dataset(test, look_back)

reshape input to be [samples, time steps, features]

trainX = numpy.reshape(trainX, (trainX.shape[0], 1,

trainX.shape[1]))

testX = numpy.reshape(testX, (testX.shape[0], 1,

testX.shape[1]))

create and fit the LSTM network

model = Sequential()

model.add(LSTM(40, input_shape=(1, look_back)))

model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam')

model.fit(trainX, trainY, epochs=100, batch_size=1,

verbose=2)

make predictions

trainPredict = model.predict(trainX)

testPredict = model.predict(testX)

invert predictions

trainPredict = scaler.inverse_transform(trainPredict)

trainY = scaler.inverse_transform([trainY])

testPredict = scaler.inverse_transform(testPredict)

testY = scaler.inverse_transform([testY])

calculate root mean squared error

trainScore = math.sqrt(mean_squared_error(trainY[0],

trainPredict[:,0]))

print('Train Score: %.2f RMSE' % (trainScore))

shift train predictions for plotting

trainPredictPlot = numpy.empty_like(dataset)

trainPredictPlot[:, :] = numpy.nan

trainPredictPlot[look_back:len(trainPredict)+look_back, :] =

trainPredict

shift test predictions for plotting

testPredictPlot = numpy.empty_like(dataset)

testPredictPlot[:, :] = numpy.nan

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)

-1, :] = testPredict

30 point Prediction values y(n+30)

submit = testPredict[-30:]

print(submit, submit.shape)

plot baseline and predictions

plt.plot(scaler.inverse_transform(dataset)[0:274,:])

plt.plot(trainPredictPlot)

plt.plot(testPredictPlot)

plt.show()

