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Abstract—This project uses a Long Short-Term Memory 

(LSTM) recurrent neural network (RNN) for time series 

prediction based on a time series data set that has 275 data points 

(y(n), n=1, 2, …, 275). 
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I. INTRODUCTION 

Recurrent Neural Network computations allow for 
information to persist during computation through connected 
nodes forming a directed graph. Unlike traditional neural 
networks, recurrent neural networks or RNNs use their internal 
states to process information such as time series data. These 
models allow for computations like the given data set of 275 
points and also allow for predictions using y(n+T) where T=30. 
This report will have an overview of recurrent neural networks, 
long short-term memory networks, computation and its results.  

II. RNNS & LSTM NETWORKS 

Long Short-Term Memory networks (LSTMs) are a variant 
of Recurrent Neural Networks that allow for learning of long-
term dependencies. These networks are designed for 
remembering information for long periods of time due to the 
implemented chain of neural nets. Figure one shows an example 
of an LSTM and RNN architecture [1]. 

 

 

 

Figure 1. Examples of LSTM and RNN architectures 

 

In a typical LSTM model, a chain of modules as pictured to the 
left in Figure 1, will be linked together to pass a vector from one 
node to the next during computation [2]. These links allow 
predictions to be trained on the memory of the past inputs of the 
vectors. These LSTM chains of neural nets allow for solving 

problems of all types including speech and handwriting 
recognition. 

III. PYTHON LSTM NEURAL NETWORK 

 To setup the neural network correctly, the data was 
vectorized. This vectorization is a powerful method to package 
the information in a way that the RNN can us it. What makes 
this problem unique is the time series aspect. That signifies that 
the data set does not have multiple features. This neural network 
does not apply to other situations were multiple features are part 
of the dataset. I the process of creating the neural network, it is 
important to understand the packages used in the code as well as 
the actual coding language. The neural network was 
implemented and tested with the help of website focused on the 
topic of machine learning [3]. 

A. Python Packages 

    Implementing Python was the solution to this problem, along 

with other installations. The first and most important Python 

installation was Keras. Keras is an API for high level neural 

networks [4].  Within Keras, the Sequential function was called 

in the code listed in the Appendix. The Sequential function 

allows for linear layers to be stacked. These layers are 

associated with the layers in a neural network. With a simple 

adjustment, the number of neural network layers can be 

increased or decreased. For this solution, two layers were 

added. The Dense layer was used for the operation 

implementation. This full connected neural network has every 

input node and output node connected. The LSTM layer has the 

recurrent neural network (RNN). This layer will model the 

behavior of the training data in a time sequence. This layer is 

what separates this RNN from other designs (Figure 1).  

The next important Python installation was NumPy. NumPy is 

a scientific computing package [5]. This package allows for 

creation and manipulation of arrays objects. This array object 

can be in the form of a vector, vertical, array, horizontal, and 

matrix, multi-dimensional. Mainly in this solution, vectors and 

arrays were implemented. For example, the code would not 

work if the dataset in the Excel file was only ported into a 

variable. The values had to be conditioned and formed before 

executing the RNN construction and training. In this solution, 

the dataset is imported from the provided spreadsheet, 

separated into respective training and testing sets, then 

packaged as a dataset (Line 12) using NumPy. Even after 

packaging in the create_dataset, NumPy was used again to 

reshape each sub-dataset into usable dimensions for the LSTM 

with datapoint dimensions of 3x1x1. That was the dimensional 

criteria for LSTM.  Understanding the capability of this 



package and how it played a key role in the representation of 

information was vital aspect of this solution. 

   The final important package installed in Python was 

TensorFlow. TensorFlow is a machine learning framework[6]. 

TensorFlow works in conjunction with Keras. This program is 

mainly tasked with dataflow structures. For example, Keras will 

construct the deep learning model while using TensorFlow 

functions and symbolic library. Essentially, Keras is a program 

wrapper for TensorFlow. 

   The remaining packages are important in execution but used 

in limited amounts in the code compared to the former 

packages.  Pandas is a data structure tool [7]. Often used in data 

analysis, pandas was only used to interface with the spreadsheet 

to extract the data. Sklearn is a Python library for machine 

learning. This package is built on top of NumPy[8]. This 

package was mainly used to apply a scaler fit on the whole 

dataset. The scaler fit functions to bring the values in the dataset 

to a range between -1 and 1. This normalization functions to 

remove extremes in the dataset that might influence the 

machine learning. The final package required to execute the 

code was matplotlib. Matplotlib is library that allows for 

programs like Python to plot data. This package was only used 

at the end of the code to generated a visual representation of the 

dataset, training predictions, and test predictions. 

B. Code 

 Along with understanding important packages used in a 

particular, it is vital to understand the individual executions or 

functions called. This section will highlight unique sections of 

code and offer an explanation relative to the overall objective 

or task. The Sequential command in Line 45 starts the process 

to construct the neural network. It defines the type of neural 

network to be used. As mentioned earlier, this command called 

a neural network model specific to time series data. Till this 

point in the code, the definition of the RNN has not been made. 

The previous lines only import, condition, and shape the given 

data to be used train the neural network. Line 46 defines the 

number of hidden neurons in the single hidden layer and the 

input shape. This code execution had 40 hidden neurons. The 

default used in the tutorial was set to a value of 4. In 

experimenting with the neural network on this problem, the 

number of hidden layers did not have a significant impact on 

the output and training accuracy. It is important to note that the 

LSTM neurons use the default sigmoid activation formula 

(Equation 1). The input shape of 1 has the dimension of 3x1x1. 

This value was not modified because this value would prevent 

the code from executing if the incorrect value is set. The next 

line used the Dense function. For this classical neural network 

design had a singular output. Increasing this value increases the 

number of output nodes. For a time-series neural network, a 

singular output was sufficient. The compiler function (Line 48) 

configures the model for training [4]. Within the compile 

function, the loss function was defined. For this instance, the 

loss function used when compiling was the root mean square 

error. This applied the root mean square error calculation 

between the predicted value output of the neural network and 

the actual value in the dataset to calculate the loss as the neural 

network trains. The final line for this section initializes the 

training of the model to the number of epochs defined. This 

function takes the input values, specifically NumPy values. 

Epochs is the number of iterations over the whole dataset. For 

example, 2 epochs will train through the entire dataset twice 

regardless of the number of iterations performed on each 

datapoint.  
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IV. RESULTS 

The dataset was divided into two sub-datasets. One was used 
to train the RNN and the other was used to test the neural 
network predictions against actual values. The required 
prediction of 30 values beyond the original dataset is included 
in the test sub-dataset. Figure 2 is the output of the code with a 
time-series along the x-axis, or index, and the dataset value for 
the y-axis. The blue line represented the dataset. The orange line 
represented the values used in the training. The green line 
represented the test sub-dataset. The test values overlapping the 
blue indicate the values that were used to compare predictions at 
the end of the dataset. The remaining green line were the actual 
predicted values generated by the neural network. Figure 3 is a 
zoomed in image of a portion of the test values and the predicted 
values. According to the code output, the root mean square error 
for the training was 19.86. By visual inspection, the neural 
network did a good job of predicting the values during training. 
More so, the overlap in the test group also has a good level of 
accurate prediction. Table 1 has the values for the 30 predicted 
points. 

 

 

Figure 2 Code Output 



 

Figure 3 Code Output (Zoomed View) 

 

Table 1: Predicted Values 

1 38.85733 16 86.48565 

2 38.85708 17 130.45955 

3 14.172772 18 119.55465 

4 16.766094 19 118.3932 

5 40.212147 20 79.59135 

6 76.22963 21 67.89791 

7 103.32304 22 36.311058 

8 99.67182 23 21.250668 

9 83.486046 24 13.047722 

10 66.592926 25 41.818687 

11 49.8065 26 123.44533 

12 35.54595 27 156.28847 

13 23.315609 28 152.82361 

14 17.543253 29 135.6004 

15 37.75463 30 101.72965 

 

A. Interesting Observation 

 Figure 4 was included because it was an interesting 

observation. Figure 4 was a result of removing the scaler fit 

transformation (Line 28). Without the fit transformation, the 

neural network was not able to accurately predict the peaks of 

the dataset. 

 
Figure 4: Code Output without Regularization 

 

V. ANDREW NG – CONNECTIONS 

 The connections between this project and educational 

video done by Prof. Andrew Ng are few. Andrew Ng does 

discuss the theory of gradient descent and cost functions. The 

theory of the cost function does hold in this instance. The cost 

function in this application was seen through the loss value. 

The loss value for each epoch indicates the minimization of 

the cost function. On the other hand, the gradient descent does 

not have significant influence. Prof. Andrew Ng stressed the 

importance of the gradient descent but time-series functions 

are unique in this situation. The LSTM neural network is 

tuned using backpropagation and overcomes the vanishing 

gradient problem [3]. There is a good overlap over the 

sidmoid function (Equation 1). This value is important in 

application but is only stressed in the Prof. Andrew Ng’s 

online course on Coursera. The Coursera online class had 

programming labs that allowed the student to implement the 

sigmoid activation function relative to the desired neural 

network application. It is important to note that the online 

Coursera course does not cover time-series neural networks. 

The online class, as well as this class, focuses on a more 

classical application of neural networks where datasets have 

one or more features, general more than one. 
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VII. APPENDIX 

 

A. Code 

#Project 3 Team 5 : Krys Newman, Trincy Kozhikkadan, Rick 

Alayza 

import numpy 

import matplotlib.pyplot as plt 

from pandas import read_csv 

import math 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error 

# convert an array of values into a dataset matrix 

def create_dataset(dataset, look_back=1): 

 dataX, dataY = [], [] 

 for i in range(len(dataset)-look_back-1): 

  a = dataset[i:(i+look_back), 0] 

  dataX.append(a) 

  dataY.append(dataset[i + look_back, 0]) 

 return numpy.array(dataX), numpy.array(dataY) 

# fix random seed for reproducibility 

numpy.random.seed(7) 

# load the dataset 

dataframe = read_csv('C:\Python35\Scripts\project2_time 

series data_students.csv', usecols=[1], engine='python', 

skipfooter=0,header=0) 

dataset = dataframe.values 

dataset = dataset.astype('float32') 

 

# normalize the dataset 

scaler = MinMaxScaler(feature_range=(0, 1)) 

dataset = scaler.fit_transform(dataset) 

 

# split into train and test sets 

train_size = int(len(dataset) * 0.80) 

test_size = len(dataset) - train_size 

# Predicted values are lumped in with test 

train, test = dataset[0:train_size,:], 

dataset[train_size:len(dataset),:] 

# reshape into X=t and Y=t+1 

look_back = 1 

trainX, trainY = create_dataset(train, look_back) 

testX, testY = create_dataset(test, look_back) 

 

# reshape input to be [samples, time steps, features] 

trainX = numpy.reshape(trainX, (trainX.shape[0], 1, 

trainX.shape[1])) 

testX = numpy.reshape(testX, (testX.shape[0], 1, 

testX.shape[1])) 

 

# create and fit the LSTM network 

model = Sequential() 

model.add(LSTM(40, input_shape=(1, look_back))) 

 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 

model.fit(trainX, trainY, epochs=100, batch_size=1, 

verbose=2) 

# make predictions 

trainPredict = model.predict(trainX) 

testPredict = model.predict(testX) 

# invert predictions 

trainPredict = scaler.inverse_transform(trainPredict) 

trainY = scaler.inverse_transform([trainY]) 

testPredict = scaler.inverse_transform(testPredict) 

testY = scaler.inverse_transform([testY]) 

 

# calculate root mean squared error 

trainScore = math.sqrt(mean_squared_error(trainY[0], 

trainPredict[:,0])) 

print('Train Score: %.2f RMSE' % (trainScore)) 

# shift train predictions for plotting 

trainPredictPlot = numpy.empty_like(dataset) 

trainPredictPlot[:, :] = numpy.nan 

trainPredictPlot[look_back:len(trainPredict)+look_back, :] = 

trainPredict 

# shift test predictions for plotting 

testPredictPlot = numpy.empty_like(dataset) 

testPredictPlot[:, :] = numpy.nan 

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)

-1, :] = testPredict 

# 30 point Prediction values y(n+30) 

submit = testPredict[-30:] 

print(submit, submit.shape) 

# plot baseline and predictions 

plt.plot(scaler.inverse_transform(dataset)[0:274,:]) 

plt.plot(trainPredictPlot) 

plt.plot(testPredictPlot) 

plt.show() 

 


